
A Model-based Ruling Line Detection Algorithm for Noisy Handwritten Documents

Jin Chen
Dept. of Computer Science & Engineering

Lehigh University
Bethlehem, PA 18015, USA

jic207@cse.lehigh.edu

Daniel Lopresti
Dept. of Computer Science & Engineering

Lehigh University
Bethlehem, PA 18015, USA

lopresti@cse.lehigh.edu

Abstract—Ruling lines are commonly used to help people
write neatly on paper. In document image analysis, however,
they create challenges for handwriting recognition and writer
identification. In this paper, we model ruling line detection
as a multi-line linear regression problem and then derive a
globally optimal solution giving the Least Square Error. We
demonstrate the efficacy of the technique on both synthetic and
real datasets. A comparative study shows that our algorithm
outperforms a previously published method on the public
Germana dataset.

Keywords-handwritten documents; ruling line detection;

I. INTRODUCTION

The need for line recognition arises in various document
analysis applications, e.g., form/invoice processing [1], en-
gineering drawing conversion [2], musical score capture [3],
and layout analysis [4]. Many techniques work well on
clean images of good quality, but their performance dete-
riorates when lines are badly broken due to light printing or
scanning, low input resolutions, or significant overlap with
handwriting on the page [5].

Zheng, et al., presented a stochastic model-based parallel
line detection algorithm that incorporates context [4]. Rather
than treat peaks on the projection profile as line positions,
they model lines using a Hidden Markov Model so that inter-
line constraints can be incorporated.

In this work, we propose a model-based ruling line
detection algorithm that takes advantages of page-level at-
tributes, e.g., consistent spacing, skew angle, thickness, and
length. First, we introduce the framework of multi-line linear
regression and derive a globally optimal solution giving
the Least Square Error (LSE). Then we describe a Hough
transform variant for extracting line segments and the “Basic
Sequential Algorithmic Scheme (BSAS)” for grouping line
segments. After initial line clusters have been determined,
potential missed lines are identified by exploiting the model-
based nature of the method. We conduct a performance
analysis on the basis of individual model attributes, rather
than attempting to define a single metric that combines all
attributes together as in [6].

The remainder of this paper is organized as follows: in
Section II, we introduce the multi-line linear regression
model. Then we describe our ruling line detection algorithm

in Section III, and our experimental setup in Section IV.
We present experimental results in Section V, and finally
conclude in Section VI.

II. MULTI-LINE LINEAR REGRESSION

The multi-line linear regression model assumes:
i) Ruling lines are straight.

ii) Lines exhibit consistent spacing and skew.
iii) The association between points and lines is available.
iv) The number of lines k is known.
v) No lines are missing between the first and last lines.

It is important to clarify that properties iii), iv), and v) are
guaranteed by the first phase of our algorithm, and are not
fundamental limitations on our formulation of the problem.

Since the number of lines k and the point-
to-line association are provided, the points set
{(x1, y1), (x2, y2), . . . , (xn, yn)} can be further formulated
as {(xi,j , yi,j) | i = 0, . . . , k − 1; j = 1, . . . , ni;

∑k−1
i=0 ni =

n}. In addition, the ruling line are parallel and have the
same spacing, so we rewrite the normal form of the line
equation as:

β0 + iβ1 + β2xi,j + εi = yi,j (1)

where i = 0, . . . , k − 1, j = 1, . . . , ni, and
∑k−1
i=0 ni = n.

εi is a random error component. β0 is the y-intercept of the
0-th line, β1 is the spacing between lines, and β2 is the
skew angle.

Next, we rewrite the residual function as:

f
def
= ε2

def
= ‖b−A x̂‖2

=
k−1∑
i=0

ni∑
j=1

(yi,j − β̂0 − iβ̂1 − β̂2xi,j)2

(2)

To minimize the residual, we take the partial derivatives
of f with respect to β̂0, β̂1, β̂2, respectively (denoting∑k−1
i=0

∑ni

j=1 as Σ).
δf

δβ̂0
= −Σ2(yi,j − β̂0 − iβ̂1 − β̂2xi,j) = 0

δf

δβ̂1
= −Σ2k(yi,j − β̂0 − iβ̂1 − β̂2xi,j) = 0

δf

δβ̂2
= −Σ2xi(yi,j − β̂0 − iβ̂1 − β̂2xi,j) = 0

(3)

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.89

404

(a)

Figure 1: A sample from the Germana dataset.

Solving these equations, we have:Σ1 Σi Σxi,j
Σi Σi2 Σi xi,j
Σxi,j Σi xi,j Σx2i,j

×
β̂0β̂1
β̂2

 =

Σyi,j
Σi yi,j
Σxi,j yi,j

 (4)

The 3-by-3 design matrix is a symmetric matrix with positive
entries. From physical considerations where the number of
lines and the point-to-line association are available, we can
expect a unique solution x̂ = (ATA)−1ATb to Ax = b.

III. MODEL-BASED RULING LINE DETECTION

Our model-based ruling line detection algorithm em-
ploys the following assumptions: (1) Pages exhibit salient,
although not necessarily continuous, ruling line segments
(Figure 1), and (2) Ruling lines are parallel and have
consistent spacing, thickness, and length.

A. A Variant of The Hough Transform

The classical Hough Transform projects each point onto a
set of sinusoidal curve points in the (ρ, θ) plane (the Hough
Space):

ρ = xi cosθ + yi sinθ (5)

where θ ∈ [0, 2π). We adopt an effective variant in our
work [7]. First, in each iteration we select a point randomly
from the remaining point set, and then compute its sinusoidal
curve in the Hough space and update the accumulation
matrix. If the guard of the current maximum votes is larger
than the threshold, then we search in each direction from the

current position for the end points of the line segment. Since
ruling lines may be degraded in the page image, short gaps
(up to five pixels) are tolerated during the search. Once the
search stops, we record the coordinates of the end points for
the line segment, remove these points from the accumulation
matrix, and proceed.

B. Sequential Clustering

After the Hough transform, we possess a set of line
segments specified by their end points. Denote T as the
threshold of dissimilarity between clusters, and Q as the
maximum number of clusters. In our experiments, the
dissimilarity measure is the ρ-value distance between line
segments and we set T = 10 and Q = 32 empirically.

We outline the “Basic Sequential Algorithmic Scheme”
(BSAS) in Algorithm 1.

Algorithm 1: Basic Sequential Algorithmic Scheme [8]
Data: G = {xi : i = 1, . . . , N}: a set of line segments.
Result: m: number of clusters acquired.
begin

m = 1
Cm = {xi}
for i = 2 to N do

Find Cj : d(xi, Cj) = min1≤p≤md(xi, Cp)
if d(xi, Cj) > T and (m < Q) then

m = m+ 1
Cm = {xi}

else Cj = Cj ∪ {xi}

After BSAS clustering, we estimate the ruling line spacing
by building a histogram containing votes for spacing values
between two consecutive clusters. Since ruling lines in
the Germana dataset are usually broken, we select the
minimum spacing between clusters. This value is temporary
– in a later stage we update it by re-computing the spacing
globally and, hence, more precisely.

C. Single Line Fitting

After combining close clusters, we now have a good
estimation of which line segments belong to which cluster.
In this stage, we employ linear regression on each cluster.
We compute a temporary skew angle by averaging all β2
values. Again, this skew angle is tentative and will be fine-
tuned by the multi-line linear regression in a later stage.
The ruling line thickness H is computed by first building a
histogram of vertical run-lengths along each line. We then
examine the histogram and select the most frequent bucket
as the thickness H.

D. Reasoning About Missing Lines

For degraded documents, it is common for line segments
to be missed by the Hough transform. To address this, we

405

traverse the clusters checking for whether two consecutive
clusters have a larger than expected spacing. In such cases,
we hypothesize that there may be missed ruling lines in
between. We estimate the positions of missing lines by
considering the spacing and the skew angle, then we scan
along the missing lines to collect sample points for further
regression. This procedure is depicted in Algorithm 2.

The subroutine ScanZones specifies “North” or “South”
for the scanning direction, and employs a “strict” or “re-
laxed” criterion for collecting evidence. For the strict crite-
rion, we decide that a ruling line exists only if we collect
more than T1 sample points from the scanning area. For
the relaxed criterion, we do not set such a threshold. We
apply the strict criterion at the topmost and bottommost lines
on the page, and the relaxed criterion for all other lines.
The rationale is that if we want to add missing lines to
the top/bottom of the current candidate list, we need strong
evidence, otherwise we can derive their positions from the
spacing between existing lines. In this way, we iteratively
scan for missing lines until the point count is lower than
the threshold or the process reaches the edge of the image
boundary. In our experiments, T1 = 0.2× page width.

Algorithm 2: Find Missing Lines.
Data: A list of lines: linesold[m]. The temporary

spacing between lines: s.
Result: An updated list of lines: linesnew[m

′
].

begin
linesnew = ScanZones(linesold[0], s, “North,”
“strict”)
for i = 0 to m− 1 do

space = linesold[i+ 1].ρ− linesold[i].ρ
count = space/s
local s = space/count
if abs(space) > 1.5 s then

linesnew = ScanZones(linesold[i], local s,
“South,” “relaxed”)

linesnew = ScanZones(linesold[m], s, “South,”
“strict”)

E. Computing Model Parameters

At this stage in the process, we have satisfied all of the
prerequisites for Eq. 4 in Section II. Solving the equation,
we obtain the estimated parameter vector β̂. Next, we update
the linear equation for each cluster. Then for each cluster, we
scan the areas that extend from the leftmost and rightmost
points. Any newly discovered sample points are collected
as the new starting and ending points for that line. We use
the maximum line length as the ruling line length L. At the
same time, we can determine the starting position of the first
ruling line P(xp, yp).

Algorithm 2 relies on the local spacing estimate to find
missing lines, so it might not be fully reliable. Hence, we run
another round of scanning using the global spacing estimate.
A difference is that now T2 = 0.01 × page width for the
degraded dataset Germana. If there are additional ruling
lines detected at this stage, we update the corresponding
model parameters: i.e., the number of ruling lines K and the
starting position of the first line P(xp, yp).

To summarize, the model parameters determined by the
algorithm are: the starting point of the first line P(xp, yp),
the length L, the thicknessH, the skew angle β2, the number
of lines K, and the spacing β1. We denote them as Θ =
(P(xp, yp),L,H,β2,K, β1).

IV. EXPERIMENTAL SETUP

A. Data Preparation

We evaluated our ruling line algorithm on both synthetic
and real datasets. First, as a simple test of correctness, we
synthesized a dataset that contained only ruling lines using
pre-determined parameter settings. One subset consisted of
11 pages, each containing 20 ruling lines possessing the
same length, thickness, and spacing, but a different skew
angle ranging from [−1.0◦, 1.0◦] with a step size of 0.2◦.
The other subset consisted of 10 pages where the lines had
the same length, thickness, and skew angle, but the total
number of lines ranged in the interval [10, 20), with the
spacing varying as well. The ground-truth for this dataset
was generated directly from the model parameters.

We also used one real dataset, the Germana collec-
tion [9], for performance evaluation. The ground-truth in
this case was generated using the Badcat annotation tool
developed at Lehigh. Employing a model-based graphical
user interface, Badcat allows users to label ruling lines
on a page quickly with a few simple “point-click-and-
drag” operations. From the Germana dataset, we randomly
selected 20 pages as the test set, and another 20 pages as
the training set so that we could compare our method to
Zheng, et al.’s Hidden Markov Model-based approach. A
breakdown of datasets is listed in Table I.

Table I: A breakdown of datasets.

Dataset pages lines/page page size
rotation-vary 11 20 816w × 1056h
spacing-vary 10 [10, 20) 816w × 1056h

Germana 20 24 1420w × 2120h

B. Performance Evaluation Metric

The performance of line detection algorithms is generally
measured in one of two ways: pixel-level metrics and object-
level metrics [6]. Pixel-level metrics, including precision,
recall, and F-Score, are intuitive measurements. However,
pixel-accurate ground-truth is difficult to acquire because

406

labeling a page image at this level is tedious and subjective,
especially when the lines are severely degraded. On the
other hand, researchers have proposed a variety of object-
level metrics. Unfortunately, compound metrics appear less
effective in highlighting performance differences between
algorithms (e.g., Qv(c) in Liu and Dori’s work [6]).

Instead of proposing a compound metric that attempts
to combine all parameters into a single value, we chose
to measure directly the discrepancies between the com-
puted parameters and the ground-truth where Θ =
(P(xp, yp),L,H,β2,K, and β1).

C. Post-processing Zheng, et al.’s Algorithm [4]

We treated Zheng, et al.’s algorithm as a black box
which outputs a list of detected line segments. Some minor
post-processing was necessary, however, to make the results
comparable to ours.1. The number of lines K was taken
intuitively to be the size of the list. The spacing β1 was
detemined by the largest bucket in the spacing histogram.
The skew angle β2 was computed as the average for all the
line segments. The thickness H was acquired as explained in
Section III-C. Finally, P(xp, yp) and L are computed exactly
as described in Section III-E.

V. EXPERIMENTAL RESULTS

We plot intermediate results from the model-base ruling
line detection pipeline in Figure 2. Images from the Ger-
mana dataset are lower quality, so most ruling lines are
broken and difficult even for humans. As we can see from
Figure 2a, line segments tend to be incomplete and sparse.
Running Algorithm 2, we recovered several missing lines,
as shown in Figure 2b. At this stage, all lines shown in
Figure 2c were used for the multi-line linear regression.
Finally, using the skew angle and the line spacing, we
successfully detected a missing line at the top of the page,
as shown in Figure 2d.

To compare performance, we computed the error between
an algorithm’s output and the ground-truth:

D[i] = Malgorithm[i]−Mground−truth[i] (6)

where D[] is the error vector and M(·)[] corresponds to
the output or the ground-truth. We computed the mean and
the standard deviation for each dataset. These results are
organized in Table II. Note that there are two different
synthetic subsets as explained earlier, but we summarize the
performance here with a single entry in the table.

As might be expected, the synthetic dataset proved rel-
atively easy: the mean and the standard deviation of the
errors are much lower than those for the Germana dataset.
We observed relatively large errors in terms of the σ-values
for Germana. This is due largely to the degraded quality

1We also observed some memory issues when executing Zheng, et al.’s
code, so the execution was carefully supervised and the outputs were
generated one at a time.

of the documents and the relatively low scanning resolution,
causing many ruling lines to be thin and/or broken. In many
cases it is difficult to identify the ruling lines precisely.

We also ran Zheng, et al.’s algorithm on Germana,
randomly selecting 20 pages for HMM training. Table II
shows the error statistics for the two approaches. As shown
by the error means and standard deviations for the various
parameters, our method performs better on Germana.

Figure 3 shows a sample result generated by Zheng, et
al.’s algorithm. We also display our own results for compar-
ison. For degraded images such as those in Germana, our
algorithm manages to detect light and broken ruling lines.
We consider this to be a compelling demonstration of the
power of the model-based approach.

VI. CONCLUSION

In this paper, we introduced a model-based ruling line
detection algorithm that requires no supervised learning. We
first formulated the problem in the framework of multi-line
regression and then derived a globally optimal solution giv-
ing the Least Square Error. Next, we introduced procedures
for extracting line segments and detecting missing lines.
Finally, we demonstrated the efficacy of our approach by
comparing it to another method from the literature on two
datasets, one synthetic and the other real page images.

ACKNOWLEDGMENT

We thank Dr. Yefeng Zheng for providing his parallel line detec-
tion package for comparison purposes. This work is supported by a
DARPA IPTO grant administered by Raytheon BBN Technologies.

REFERENCES
[1] J. Liu and A. Jain, “Image-based form document retrieval,”

Pattern Recognition, vol. 33, no. 3, pp. 503–513, 2000.
[2] D. Dori and W. Liu, “Sparse pixel vectorization: an algorithm

and its performance evaluation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 3, pp. 202–215,
1999.

[3] D. Blostein and H. Baird, “A critical survey of music image
analysis,” in Structured Document Image Analysis, e. H. Baird,
Ed., 1992, pp. 405–434.

[4] Y. Zheng, H. Li, and D. Doermann, “A parallel-line detection
algorithm based on HMM decoding,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp.
777–792, 2005.

[5] H. Cao and V. Govindaraju, “Handwritten carbon form pre-
processing based on Markov random field,” in Proc. of IEEE
Conference on Computer Vision and Pattern Recognition,
2007.

[6] W. Liu and D. Dori, “A protocol for performance evaluation of
line detection algorithms,” Machine Vision And Applications,
vol. 9, pp. 240–250, 1997.

[7] J. Matas, C. Galambos, and J. Kittler, “Robust detection of
lines using the progressive probabilistic hough transform,”
Computer Vision and Image Understanding, vol. 78, pp. 119–
137, 2000.

[8] S. Theodoridis and K. Koutroumbas, Pattern Recognition.
Academic Press, 2009.

[9] D. Pérez, L. Tarazón, N. Serrano, F. Castro, O. R. Terrades,
and A. Juan, “The GERMANA database,” in Proc. of the Inter-
national Conference on Document Analysis and Recognition,
2009, pp. 301–305.

407

(a) Detected clusters. (b) Intermediate lines. (c) Clusters of line segments. (d) Final results.

Figure 2: Snapshots for the intermediate results generated by our model-based ruling line detection algorithm on a Germana
sample. Note that in (d), there is a missing line detected at the top.

Table II: Performance of our model-based ruling line detection and its comparison with one algorithm in the literature.

Error Statistics X-position P.x Y-position P.y Length L # of lines K Spacing β1 Skew β2 Thickness H
Synthesis Dataset

Mean (µ) -4.16 0.55 6.9 0 0 -0.01 0
Standard Deviation (σ) 5.60 2.18 5.11 0 0.01 0.05 1.41

Germana Dataset
Mean (µ) -12.30 3.80 12.85 0.25 -0.49 -0.09 0.25

Standard Deviation (σ) 39.01 20.70 34.03 1.25 2.24 0.26 0.22
Germana Dataset (Zheng, et al. [4])

Mean (µ) -49.40 57.60 70.40 -1.20 -2.40 0.02 0
Standard Deviation (σ) 62.64 113.30 62.12 5.68 8.82 1.09 0

(a) Our results on a Germana sample. (b) Zheng, et al.’s results.

Figure 3: Comparison with Zheng, et al.’s algorithm [4].

408

