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Abstract—In this work, we describe the use of statistical
grouping for partitioning line drawings into shapes, those
shapes represent meaningful parts of the symbols that con-
stitute the line drawings. This grouping method converts a
complete line drawing into a set of isolated shapes. This
conversion has two effects: (1) making isolated recognition
methods applicable for spotting symbols in context, (2) identi-
fying potential regions of interest for symbol spotting methods,
hence making them perform faster and more accurately.

Our grouping is based on finding salient convex groups
of geometric primitives, followed by combining certain found
convex groups together. Additionally, we show how such
grouping can be used for symbol spotting. When applied on
a dataset of architectural line drawings the grouping method
achieved above 98.8% recall and 97.3% precision for finding
symbols parts. Using the grouping information, the spotting
method achieved 99.3% recall and 99.9% precision. Compared
to the performance of the same method without grouping
information, an overall speed-up factor of 3.2 is achieved with
the same —or better— recall and precision values.

Keywords-convex groups; feature grouping; symbol spotting;
document analysis

I. INTRODUCTION

Technical drawings are a major class of document images,
and the analysis of those drawings is important for retrieval-
by-content search engines and digital libraries. A lot of
work has been done on the recognition of isolated symbols,
while only few methods have been proposed for spotting
symbols in context and/or symbol indexing and retrieval,
that is mainly because of the graphical content around a
symbol and touching symbols.

There are two approaches to symbol spotting, the first is
based on directly describing and indexing regions of interest
in the complete drawing, without necessarily recognizing
the symbols themselves or segmenting them. The second
approach uses some kind of segmentation to get symbols
separated from the background, and then recognize those
isolated symbols.

Most of the spotting methods in the literature belong to
the first approach. This approach has inherent problems,
first it is hard to locate zones of interest in a document
in a scale-rotation invariant way, second, special descriptors
have to be developed for line drawings, as the usual texture-
based descriptors won’t perform well on the similar local
patterns of line segments, third the indexing techniques like

1520-5363/11 $26.00 © 2011 IEEE
DOI 10.1109/ICDAR.2011.81

364

hashing do not scale well for large databases. Due to those
problems, the methods that implement the first approach
result in low precision values. One main reason for following
this approach, rather than the segmentation-based approach,
is that the current segmentation techniques do not perform
well on complex technical drawings.

It is clear, for the methods of the first approach, that if
the zones of interest in a technical drawing could be more
reliably and precisely located, the later steps of describing
and indexing them would achieve better results. As for the
methods of the second approach, they always require good
prior segmentation.

As a contribution in this direction, we present a grouping
method that extracts symbols parts from line drawings, thus
converting a line drawing to a group of isolated symbols
parts —or regions of interest— that can be later used for
spotting symbols, even by isolated recognition methods.
The proposed method applies statistical grouping on vecto-
rial primitives, followed by making combinations of these
initial groups to create the final symbol parts. The output
parts are seen to correspond to meaningful parts of the
symbols up to complete symbols. We also show how this
grouping can be used in a symbol spotting method to achieve
better results.

The work by Dosch et. al. [1] discusses some grouping
mechanisms for line drawings. It is based on studying the
relations between pairs of line segments, those relations
include collinearity, parallelism and intersections. The re-
lations from local image regions are clustered in buckets.
For matching, the signatures of these buckets are compared
to the signatures of the symbols models.

As for spotting, various methods were introduced in the
literature [2], [3], [4], [5], [6] and [7]. Those methods have
introduced some interesting ideas and techniques on various
levels. For example, they developed descriptors of zones
of interest, whether based on vectorial primitives [2], [6],
on graphs [4], [S] or on local shape contexts [3]. Different
indexing techniques were used in those works as hashing,
relational indexing and inverted file structures.

The rest of this paper is divided as follows. In the next
section we explain the grouping technique, in the third
section we present the use of this grouping in symbol
spotting, after that we show the results of evaluating both
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the grouping and the spotting methods, finally we discuss
the conclusions and future work.

II. THE GROUPING TECHNIQUE

Feature grouping based on non-accidental properties is a
computer vision technique that has been used to improve the
performance of object recognition [8], [9]. Statistically non-
accidental properties of line segments include collinearity,
parallelism, co-termination of segments end points, prox-
imity and/or convexity. The segments may be straight or
curved, for more details, the reader is referred to [9].

We have chosen convexity as an initial grouping step,
because as shown in the statistical analysis of Jacobs [10],
that it is unlikely that a random group of line segments will
form a convex group. Convexity is an effective grouping
property because even though most objects are not convex,
they can be decomposed into convex parts. Moreover, convex
groups are rotation and scale invariant.

We start by applying simple preprocessing steps on the
document images. First, a morphological edge detection
step, that produces an image of thin contour lines. Second,
a vectorization step is applied simply by sampling line seg-
ments along the contours. Those segments are the geometric
primitives used as input to the grouping procedure.
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(a) The convex groups are the same as the final parts.
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(b) Some convex groups are combined to form a smaller
number of final parts.
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(c) All the convex groups are contained in 1 outer group and
form 1 final part.

Figure 1.  Grouping: the final parts correspond to meaningful parts of
symbols up to complete symbols.

The grouping procedure has the following steps:

1) Apply Jacobs’ statistical grouping algorithm [10] for
finding salient convex groups, modified to find groups
only in counter clock-wise direction

2) Clean up the found groups by removing:

o Groups that have less than 3 segments
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o Groups with any of the dimensions > x pixels
(x=the largest dimension of the largest symbol)

o Groups that are subsets or cyclic permutations of
other groups

3) Keep the convex cycles only (the closed groups), and
the open groups that have a series of neither horizontal
nor vertical short segments (like arcs)

4) Keep the outer groups, i.e. remove the groups that are
completely contained in other groups
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Figure 2. Image parts (adjacent different parts have different shading).

Figure 1 shows how the procedure works on three different
symbols.

In this procedure, step 3 is optional and application
domain dependent, the dataset is architectural drawings, the
architectural symbols consist of closed parts, with very few
exceptions like doors symbols. In other technical drawings
where more symbols do not consist of closed parts, choosing
the salient groups can be based on other non-accidental
properties.

Step 4 produces image parts, where an image part is the
group of all segments that are located inside a group in-
cluding the segments that constitute the group itself. Clearly
an image part does not have to be convex. Before step 4,
a lot of parts from different symbols are similar, like —for
example- the rectangle shape, as noticed in [2], this slows
down the later spotting steps and results in a lot of false
positives. This step greatly reduces the number of the found
groups, and more importantly outputs parts that are different.
Figure 2 shows the final output of the grouping module on
a complete input image.



As illustrated in Figure 2, the grouping converts a line
drawing to a set of meaningful symbols parts, which can be
viewed as effective segmentation for the symbols from their
interfering background. This process can be considered as an
important content analysis step that can be carried out off-
line on a collection of line drawings. Another implication of
the grouping, is that is converts the hard spotting task into
an isolated recognition task.

It is clear now how one might proceed for symbol
spotting. One possibility is to compute shape descriptors,
or graph representations of symbols parts and then index
them, those descriptions would be easier and more accurate
to compute on isolated parts than on complete drawings with
other graphical context. Another possibility is simply using
isolated recognition methods on symbols parts.

III. SYMBOL SPOTTING WITH GROUPING

In a previous work we have introduced a technique for
symbol spotting and retrieval [11] in real world drawings.
This technique was presented for spotting query symbols in
context, so, it already does the required job, but here we
will show how it can benefit from the grouping information
to get faster and more accurate results.

First we review briefly how our previous method [11]
works. The method takes a query symbol and a database
image as input, then applies the same preprocessing steps
discussed in this work —morphological edge detection fol-
lowed by segments sampling along the edges— to both the
query and the image. For finding the matches of the query
segments within an image, it performs a branch-and-bound
search in the space of the transformations that the query
might have undergone to appear in the image. The matching
is geometric-based, where a query segment matches an
image segment if the transformed query segment aligns with
the image segment within a certain error threshold. The
method can find multiple instances of the query in an image.
For detailed discussions about geometric matching and this
method, please refer to [11], [12].

We can incorporate grouping in this method as follows:
assume that each image part—that was obtained from the
grouping step as shown in Figure 3(b)— is a separate small
database image, and then enter all of those small images as
input at once, each with its own location information, seg-
ments and transformation ranges. In this case, the algorithm
would treat those inputs as different initial candidate matches
that could have resulted from performing the matching on
the complete image.

Even though this way involves applying the matching on
many initial images, it would be most of the times faster
than matching the query against the complete image, and
that is due to three reasons:

1) The number of segments in the image greatly affects

the running time, so for big images with a large num-
ber of segments, it is less costly to do the matching
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(a) Query symbols.

(c) The output of the spotting method.

Figure 3. The complete operation sequence of the spotting method using
the grouping method as an intermediate step.

on small parts of the image many times —recall that
an image part is a group of segments—, than to do it
on the whole image once.

The running time is also affected by the size of the
transformation space, and in small images the vertical
and horizontal translation ranges are smaller than them
in the complete image.

Given that the small images are isolated symbols or
parts of symbols, we can compute properties like the
scale range and feature weights that can help speed up
the matching, and eliminate the false positives.

2)

3)

Figure 3 shows the complete spotting operation sequence.



IV. PERFORMANCE EVALUATION

In this section we present the evaluation of both the
grouping method and the spotting method on images of
architectural drawings. The dataset is a set of 300 images
taken from the dataset generated in [13] and in [14], the
dataset is publicly available!. The images are synthesis
documents that imitate real complete floor plans with sizes
between 2M to 7M pixels. Subsets of this dataset have been
used for GREC’11 symbol spotting contest, and in symbol
spotting in [3] and [7].

A. Grouping method evaluation

We will use the recall and precision metrics adapted
to grouping. Basically, we should check if the grouping
module found all the symbols in the drawings, and whether
the found parts are actually relevant symbols parts. A symbol
is counted as missing if more than 10% of its area is not
covered by any of the found parts. And a part of a symbol
is counted as irrelevant if it does not represent a symbol
part as defined in Section II, for example if the found part
consists of random segments from one or more symbols or
of segments that do not belong to any symbol.

o covered symbols recall: the number of non-missing
symbols divided by the total number of symbols in the
dataset.

« covered symbols precision: the number of relevant
found parts divided by the total number of found parts.

Table 1
RESULTS OF APPLYING THE GROUPING METHOD T10 300
DOCUMENT IMAGES OF ARCHITECTURAL DRAWINGS. M IS THE
GROUND TRUTH TOTAL NO. OF SYMBOLS IN ALL IMAGES, AND N IS THE
TOTAL NO. OF PARTS FOUND BY THE GROUPING METHOD.

Ground truth Results

Number of parts

12513 13780

Recall (M=6987) | Precision (N=13780)

Covered Symbols

98.8% 97.31%

22.75

Avg. running time per image (seconds)

In Table I, the number of found parts (N=13780) is larger
than the number of parts that should be found (12513)
according to the definition in Section II, but a lot of the
extra parts are actually relevant, for example, due to noisy
line segments, the same symbol part can be found twice in
two slightly different locations, and does not get removed
in the cleaning step. Other extra parts are irrelevant, like
the rectangles next to the windows symbols in Figure 3(b),
they are convex cycles, so the grouping procedure finds them
as symbols, and then the subsequent spotting procedure has
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to perform extra matching operations. So, the “precision”
of grouping only affects the running time of the spotting
method, but not the accuracy. We disucss the effect of the
“recall” of grouping in the next subsection.

Regarding the running time of the grouping method, it
took around 23 seconds per image on average. The running
time depends on the number of line segments in an image
and how many convex groups they can form.

B. Spotting method evaluation

For evaluating the spotting method; we used regular
recall and precision for retrieval applications. The results
are shown in Table II. Note that the spotting method takes
its input symbols from the output of the grouping method,
hence, if the grouping method missed some symbols, they
will not be found by the spotting method. In order to test
the spotting performance independently of the “recall” of
the grouping method, we have excluded the few queries that
correspond to symbols that were not 100% found by the
grouping.

In table II, the performance of the method is tested with
and without grouping information. In both cases, the same
parameters setting is used for accepting or rejecting the
matches. As noticed in Table II, the spotting results for the
“sofa-1” symbol are lower than the average, that is mainly
because it is a simple shape that has few segments, and it
is almost a subset of some other symbols. This also causes
slower matching with isolated symbol parts.

As for the running time, only the spotting running time
is measured, that means we assume the grouping is done
off-line as a content analysis step.

The results reported so far in the literature for symbol
spotting in general, and for spotting on this particular
standard dataset [3], [7], have significantly lower spotting
accuracies.

The grouping improves the spotting precision values and
helps with the overall speedup. However, as mentioned, the
grouping has its own major benefit that is independent of
spotting, which is effective segmentation of line drawings
and its potential use for content analysis.

V. CONCLUSION

A statistical grouping method for segmenting technical
drawings has been introduced, the method has shown to be
effective in describing the content of a line drawing, this de-
scription as symbol parts -or complete symbols- is compact
and useful for later recognition and spotting steps. Besides,
we believe that using grouping of geometric primitives for
content description is more suitable for technical drawings
than texture based descriptors, as the drawings consist of
lines and curves. For future work, we will apply the grouping
method on other types of technical drawings and on real
world line drawings, and further investigate the use of non-
accidental properties for describing image content.
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Table 11
RESULTS OF APPLYING THE SPOTTING METHOD T10 300 DOCUMENT IMAGES OF ARCHITECTURAL DRAWINGS. THE 2™ COLUMN ENTRIES SHOW
THE GROUND TRUTH TOTAL NO. OF INSTANCES OF EACH QUERY SYMBOL IN ALL IMAGES, THEY SUM TO L=3900. AND P1=3860, P2=3972 ARE THE
TOTAL NO. OF SPOTTED SYMBOLS WITH AND WITHOUT GROUPING RESPECTIVELY.

Query® Symbol Recall (L=3900) Precision (P1=3860, P2=3972) Avg. time per image (sec.)
instances
with grouping | no grouping with grouping | no grouping with grouping | no grouping

bed 300 100% 100% 100% 100% 53 15.4
table 1172 100% 100% 100% 100% 9.2 19.1
sink-1 201 100% 100% 100% 100% 5.1 15.2
sink-2 112 100% 100% 100% 100% 4.7 88.4
tub 300 100% 100% 100% 100% 27.9 47.8
window® 1440 100% 100% 100% 100% 10.1 96.0
sofa-1 850 95% 85% 99.6% 80% 23.0 13.0
sofa-2 374 100% 100% 100% 100% 23.0 55.8

“We have used only the queries that correspond to symbols that were 100% covered by the grouping algorithm, in order to
evaluate the spotting method independently of the grouping’s recall values.

For this window query, the results are shown only for 100 images, because in the rest of the dataset, the window symbol is
scaled without keeping the aspect ratio, but we only spot similarity-transformed symbols.
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