
Hypothesis Preser
with W

Takafumi Yamazoe, M
Service & Solution Develo

yamazoet at nttdocomo

Abstract—This paper shows that the use of 
State Transducer (WFST) significantly elim
ambiguity in scene text recognition, especia
Kanji characters.   The proposed method consi
called WFST-OCR and WFST-Lexicon. WFST
multiple hypotheses caused by erroneous text l
segmentation and character recognition proces
WFST-Lexicon and its convolution of WFST
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data, and solved in one integrated step; the sy
that are statistically consistent with regard
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system demonstrates practical performance 
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we may have a better result. That is not strongly 
demanded. The essential requirement is high recall 
coverage by over-extraction of text regions. Thus, all 
the results in Fig. 4 will be used in the following step.   

C. Character Segmentation from Text Region 
Character segmentation is realized as a projection analysis 
of CC-regions for each text boundary rectangles. The 
method used here is not new as it was already surveyed in 
[16].   The vertical projection of a text region consists of a 
simple running count of the black pixels in each column. It 
can serve for the detection of white space between 
successive letters. Fig. 5 depicts the DRY CLEANING 
example. Note that Japanese texts may be written vertically 
as well as horizontally.  In the former case, the system 
performs a horizontal projection. 

 
Figure 5. Vertical projection analysis for character segmentation. 

 
The systems adopt a more sophisticated analysis based on 
peak-to-valley functions, so that different thresholds can 
derive multiple hypotheses, i.e., the over-extraction of 
possible character segments.  

The over-segmentation strategy is inspired by Saidane’s 
work[17]. Saidane’s paper describes an optimized text 
region recognition scheme with a weighted directed acyclic 
graph, where nodes represent character segmentation 
positions and edges represent costs.  Costs are derived from 
character recognition scores, position consistency of 
neighboring characters, and separation distance. The 
optimal path (i.e., OCR result) is obtained as the lowest cost 
traverse over the graph in terms of character segmentation 
and character-wise recognition confidence. The proposed 
method takes a similar approach in that sense. The major 
advancement is the integration of language statistics with 
two WFSTs as explained in the next section. 

III. TWO WFSTS 
Pattern recognition in general pursues reverse problem 
solving to identify the pattern generation process from what 
follows from the origin (or the ground truth if any). To find 
the most reasonable source model, we often take a 
hypothesis-preservation approach, where extensive different 
assumptions are considered and verified as to whether they 
consistently predict the observation. Hypotheses may have 
likelihood values (confidence scores) and constraints from 
other hypotheses.  The issue is how to find the most 
computationally-efficient method to maintain the numerous 
hypotheses. The approach taken here is to use a graph 
representation which embodies hypotheses with those 
likelihoods and constraints. We will see how WFST 
effectively works in the following subsections. 

A. WFST in general 
A weighted finite-state transducer (WFST) is a finite 
automaton for which each transition has an input label, an 
output label, and a weight. The system adopts OpenFST[7], 
and all notations of WFST follow those of the document. 
 
A. weighted finite-state transducer  

over a semiring   is specified by a finite input 

alphabet  a finite output alphabet , a finite set of 

states , a set of initial states , a set of final 

states , a finite set of transitions 

 an initial state weight

assignment , a final state weight assignment

, and  empty string label 

Given transition , let  denote its origin or 
previous state,  its next state,  its input label,  
its output label, and  its weight. Thus  is attributed as  

  
over semiring .   (2). 
 A weight in a WFST represents the cost of taking that 
transition, where optimization for finding plausible outputs 
is performed over weights.  Here we use the probability 
semiring for  to combine probabilities. For 
implementation simplicity, however, the proposed system 
uses real weights normalized to  via negative-log 
mapping from probabilities.   represents weighted 
hypotheses from predefined knowledge and observation, 
and it, in fact, characterizes a WFST. Here is a useful WFST 
composition operation from two or more WFSTs. For the 
specific implementation addressed here,  

where 
 

(3) 

B. WFST-OCR 
The system creates for each text line according to the 
following assignments: 

 :  {Japanese and English characters},  
:   
:  { left positions of  each character segment}, 

:  leftmost position of  the text line,
:  rightmost  position of  the text line,

:  set to zero, and 
:  {e} with 

(4) 
                           (5) 
Eq. 4 gives transition costs as determined from OCR results, 
given a character segment. In the current implementation, the 
system uses four off-the-shelf OCR engines including 
NHOCR[18]. N is empirically set to 20 considering the 
Japanese character set size, say 2000. The number of 
transitions is typically around 40-60, and 80 at most when 

361



the OCR engines return non-overlapped character lists from 
the first to 20th character. Empty string  is used as a 
penalty to skip the character segment.  
Let us go back to DRY CLEANING example, which 
contains approximately 1 million hypotheses as one of 

the most complex examples.  Here we will see how the 
system creates from the hypothesis as shown in Figs. 4 
and 5. The initial state is label 0. The final state is 10. 
Weights are not shown in Fig. 6 for graphic simplicity. 
Empty  transitions are added on the horizontal center line 
from state 0  to state 10.  

 
Figure 6. WFST-OCR example. 

 

 
Figure 7. WFST-Lexicon example. 

C. WFST-Lexicon 
This WFST gives the knowledge about a language model. 
The system creates from each lexicon according to the 
following assignments: 

 :  {Japanese and English characters  appearing in the 
given lexicon. In the experiment, the size is about 1 million 
words}, 

:
:  { logical character segments in each word}, 

:  One pre-defined initial state
: One pre-defined final state, 

:  set to zero, and 
:  {e} with

,  

if (  ) spans the first character of each word, else 
 is set to zero, where  .  (6) 

 
Eq. 6 represents the heuristic of longer and more frequent 

words are better for text extraction. We use this heuristic 
to simplify parameter dependency in the 

experiments.  
Fig. 7 shows an example of a WFST-Lexicon that contains 
“CLEANING” and “CLEANER,” which are already 
minimized into a compact representation.  
Having one WFST-Lexicon and a set of WFST-OCRs (one 

for each text line), the system performs the convolution as 

described in Eq. 3 and yields the output shown in Fig. 8.  The 
composed WFST transduces the states from ‘S’ to ‘F’, and 
outputs ‘CLEANING’ as the most plausible result from the 
multiple hypotheses including  Japanese character candidates. 
The image where recognition results are plotted is shown in 
Fig. 9. 

IV. EXPERIMENTS 
Fig.10 shows the result of the first experiment which 
evaluates the precision and recall of word correctness over 
the ICDAR test set including the DRY CLEANING 
example.   ICDAR’03-’05 were conducted to evaluate 
segmentation correctness and its top score was (0.62, 
0.67)[3].  It is hard to compare the different criteria, but we 
can conclude that the obtained word recognition score (0.58, 
0.54) is satisfactory, since word recognition has more error-
prone steps (including text line extraction and OCR) beyond 
text segmentation.  

 
Figure 10. Precision-recall curve from ICDAR test set. 

 
The next experiment uses Japanese Kanji characters to 
evaluate the complexity of the WFST approach.  Fig. 11 
shows examples, where the system achieved precision/recall 
values of (0.59,0.68). Table 1 summarizes the size of  

A Japanese lexicon 
is constant for all images, but does  vary with 

input image complexity.  

TABLE I.  NUMBER OF WFST STATES AND TRANSITIONS (SEE EQ.3). 

 Image (a)  Image (b)  Image (c)  Image (d)  

#QLEX 10,264,288 10,264,288 10,264,288 10,264,288

#ELEX  11,252,274 11,252,274 11,252,274 11,252,274

#QOCR 1,706  988  814  2562  

#EOCR 185,797  39,478  69,438  185,400  

#Q  9,105  7,877  7,417  10,548  

#E  13,186  11,960  11,501  14,627  

#texts 2  1  1  8  

The system took 86 seconds, on average, to perform all 
steps using a 2.8GHz Core 2 processor, 3.2GB RAM (32bit 
Windows XP single-thread application). There is a natural 
concern about the complexity of hypothesis preservation. 
From the above result, we can conclude that WFST 
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operation on realistic targets is practical in terms of search 
efficiency and precision in spite of the large number of 
states and transitions.  

V. CONCLUSION 
We proposed a WFST-based approach to the resolution of 
large-scale ambiguity with multiplicities in text extraction, 
text line segmentation, character segmentation, and character 
recognition. The key advance is a very efficient 
implementation of hypothesis preservation. A system was 
implemented that performed optimized WFST operations 
and tests showed that it yielded statistically correct outputs 
with a reasonable level of computing complexity. This is the 
first report, to the authors’ knowledge, of large-scale 
integration of text-extraction in the image domain and 
language modeling. Further study includes integrating  
advanced language models into the current system via 
composition operations, and to further optimize it by on-the-
fly composition. 
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Figure 8.  A composition result obtained from the WFST-OCR    Figure 9. Recognition results of 

 and WFST-LEX in Figures 6 and 7 (bold lines).    DRY CLEANING” example 
 

  
(a) Fire Extinguisher                       (b)Traffic sign (vertical direction)                      (c) Logo                           (d) Product packages 
 

Figure 11. Examples for Japanese text recognition. 
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