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Abstract— This paper presents a method to extract cells from 
form documents of an unknown format based on intersection 
tracking and global optimization. Because of the increasing 
varieties of forms and complications in the forms, cell 
extraction has become a key factor in automatic form 
recognition. The proposed method produces cell candidates by 
using intersection features and tracing intersection points to 
form closed regions. Then, global optimization is carried out to 
determine a set of cells having the highest likelihood. 
Maintaining precision for 82 kinds of forms, the proposed 
method achieved a recall rate of 80.4% whereas the 
conventional method achieved a recall rate of 77.1%. 
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I.  INTRODUCTION 
One of the main objectives of form image recognition is 

to recognize text data written in the forms, thereby reducing 
data entry costs of the operators. A high-performance form 
recognition system can reduce the operator’s burden; 
however, low-performance system can lead to an increase in 
the cost. Most of the practical form recognition systems use 
form templates to yield highly accurate results. To deal with 
various types of forms, some form recognition systems adopt 
form identification method [1]-[4]. However, there is an 
increasing demand for template-free form recognition 
methods [5]-[7], which is backed by the growing market of 
scanners and digital cameras (note: [7] is not a method of 
table image recognition). As the use of scanners is gaining 
popularity primarily in the consumer market, the nature of 
document images that require to be recognized is becoming 
more complicated and degraded in quality. Form recognition 
can be applied to even documents that are not forms but 
which include tables; these form recognition methods 
primarily consist of table recognition modules. 

Tables can be of two types: ruled-line and a non ruled-
line tables. A ruled-line table is formed by ruled lines that are 
straight vertical and horizontal lines, and the areas enclosed 
by these ruled lines are called cells, which contains text. A 
non ruled-line table uses a relative position between text 
areas to express table structures. Recognizing ruled-line 
tables is often considered to be easier than recognizing non 
ruled-line tables because ruled-line tables provide more 
information than non ruled-line tables. However, ruled-line 
tables can be difficult to recognize in the following case. In 

much degraded images, ruled lines are not clear enough to be 
extracted without errors. If some of the ruled lines are lost, 
the cells formed by the lost ruled lines are dropped, and the 
text in those cells will not be recognized correctly. As ruled 
line and text images may affect each other [8], extracting 
ruled lines and text from ruled-line tables can sometimes be 
more difficult than extracting text from non ruled-line tables. 

Accurately extracting cells from ambiguous ruled-line 
images is the main topic of this paper. In earlier studies, we 
identified three types of cell extraction methods: direct 
extraction methods, ruled-line-based methods, and 
intersection-based methods. Direct extraction methods 
identify rectangular areas using geometric hashing [9] or a 
generalized Hough transform [10]. Ruled-line-based 
methods use extracted ruled lines to identify enclosed areas. 
A typical ruled-line-based method recursively cuts a table 
area using parallel ruled lines [1][11] (Fig.1). Intersection-
based methods extract intersections and identify rectangles 
on the basis of sets of intersections [12]. Most of these 
methods extract only rectangles as cell areas. This indicates 
that they are not robust against misrecognition of ruled lines. 
For example, non rectangle (L-shaped) cells, as shown in 
Figure 2, cannot be extracted, and improper ruled lines can 
produce unexpected L-shaped cells. 
 

 
Figure 1.  Cell Extraction by Parallel Ruled Lines. 

 
Figure 2.  Misextraction of L-shaped Cell. 

In this paper, we present a cell extraction method using 
intersection tracking and global optimization of multiple cell 
combinations. As intersection tracking is robust against 
misrecognition of ruled lines and can extract non rectangular 
enclosed areas, our method can achieve a high accuracy in 
extracting cells. In addition, we adopt a global optimization 
approach based on dynamic programming to obtain the best 
cell combination derived from multiple cell candidates. 
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In Section II, we describe the cell candidate extraction 
method that extracts intersections and identifies cell areas by 
tracking the extracted intersections. In Section III, we present 
the global optimization method, which obtains the best cell 
combination. In Section IV, the effectiveness of the 
developed method is shown through experimental results. 
Finally, in Section V, we conclude the paper. 

II. CELL CANDIDATE EXTRACTION 
In this section we describe the cell candidate extraction 

step that is composed of two substeps: extraction of 
intersections and identification of cell areas. To extract 
intersections, a grid space, which expresses simplified 
positions of ruled lines, is created. The intersections are 
placed on grid points and cell candidates are extracted by 
tracking the intersections along the grid lines. 
 

 
Figure 3.  Steps of Cell Candidate Extraction. 

 
Figure 4.  Intersection and Line-direction Attributes. 

 
Figure 5.  Deletion of Improper Line-direction Attributes. 

A. Extracting Intersections 
Input ruled lines are first separated into groups having 

similar positions (referring to the x-values for vertical lines 
and the y-values for horizontal lines). In Figure 3, there are 
six groups of horizontal lines and four groups of vertical 
lines (Fig.3 (b)). The intersections are extracted and assigned 
grid points that indicate the relations between the ruled lines 
and the grid positions (Fig.3 (c)). 

Figure 4 shows the various types of intersections. 
Intersection attributes (Fig.4(a)) express the shapes of 
intersections  (“T”, “L”, “I” and “+” shapes) depending on 
how the ruled lines are connected to the grid point. A ruled 
line can be connected to a grid point from four directions that 
are called line-direction attributes (Fig.4(b)). Each 

intersection attribute is composed of a combination of line-
direction attributes. After the intersections are assigned, 
some of the incorrect conditions should be corrected by 
removing improper line-direction attributes (Fig.5). 

B. Identifying Cell Areas by Tracking Intersections 
A cell area can be extracted as a closed path formed by 

intersection tracking starting from the top-left corner. From 
each intersection, a tracking path moves the current position 
clockwise to the next grid point. If the path direction (Fig.6) 
assigned to the grid point matches the direction of the 
tracking path movement, the tracking path changes its path 
direction at the grid point. Finally, if the tracking path comes 
back to the starting point, the tracking is complete, and the 
closed path is recognized as a cell area. Figure 7 shows an 
example of cell candidate extraction. The dotted circles 
indicate the starting positions of tracking paths and are 
considered as representative points of each cell area. 

 
Figure 6.  Path-direction Attributes. 

 
Figure 7.  Cell Candidate Creation. 

III. OPTIMIZATION OF CELL COMBINATIONS 
If all ruled lines were extracted correctly, accurate cell 

extraction can be achieved using the method described in 
Section II. However, in reality, some of the ruled lines may 
be extracted incorrectly, and this may lead to cell extraction 
errors. To achieve accurate cell extraction with ambiguous 
ruled line information, we adopt a global optimization 
method using multiple cell candidates. 

A. Combining Multiple Cell Candidates 
In the case that ruled line information is not reliable, line-

direction attributes can be ambiguous, as shown in Figures 
8(a) and (b). Here, it is difficult to determine whether the 
vertical ruled line is connected to the horizontal ruled line or 
not. Thus, there could be two possible tracking paths, as 
shown in Figure 8(c) and (d). Similarly, we can obtain 
multiple cell candidates at each grid point. 

Then, we determine an appropriate combination of 
multiple cell candidates. This problem can be formulated as a 
panel layout problem (Fig.9). To obtain an optimal cell 
combination, we adopt probability measure as an evaluation 
function. When the probability of a cell Xi is P(Xi), the 
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evaluation function of a cell candidate set X = X1,X2,...,XN 
can be defined by P(X) as given in Formula 1. The 
probability measure is usually used in the form of a log 
likelihood as shown in Formula 2. 
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Although Formula 2 can be used as an evaluation 
function when comparing cell combinations having the same 
number of cells, it needs an additional correction factor to 
make it applicable to a number of cell candidates. In similar 
problems, such as evaluating optimal candidates in language 
processing, Formula 3 is often used. In Formula 3, p is a 
predefined correction factor to compensate for a large value 
of N. On the other hand, Formula 4 is also used to 
compensate for the number of cell candidates. We adopt 
Formula 4 because it does not use predefined parameters and 
does not need specific adjustment. 
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Figure 8.  Multiple Cell Candidate Creation. 

 

 
Figure 9.  Combinatorial Searching for Cell Extraction. 

 
 

B. Assigning Likelihood to each Cell Candidate 
We have approximately defined how to estimate the log 

likelihood of each cell candidate Lc(Xi) as follows. The log 
likelihood of a cell candidate can be calculated using line-
direction attributes because they represent how reliable ruled 
lines and cell candidates are. A cell candidate is composed of 
a set of intersections. These intersections can be expressed as 
a sequence of path directions. Because a path direction is a 
combination of line directions, the log likelihood of a cell 
candidate can be calculated from the scores of the line 
directions. 

We have defined the line-direction score in Formula 5; 
where the gap between a ruled line and a grid point is 
represented as d (Fig.10(a)). The path-direction scores 
(Fig.10(c)) are defined in Formula 6. The cell candidate’s log 
likelihood is calculated using Formula 7 and 8; in these 
formulas the number of intersections on the intersection 
tracking path is represented as M. 
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Figure 10.  Scores of Line Directions and Path Directions. 

C. Searching an Optimal Cell Combination by Dynamic 
Programming 
The best combination of cell candidates can be obtained 

by using an optimization algorithm. We solved this problem 
by DP (dynamic programming). A problem that can be 

356



solved by DP should be a multistage decision process that 
satisfies the following conditions. 

1) The i+1 th state s(i+1) can only be defined by s(i) 
and i+1 th operation d(i+1). (independent from the 
states s(i-1) or earlier) 

2) The value of the total evaluation function f is 
defined by a sum of all the evaluation values of 
states and operations. 

To satisfy condition 1), we consider all possible 
combinations on each line as states of the DP algorithm 
(Fig.11). The current line filled with cell combinations is 
called the search boundary. This boundary is placed at the 
1st line at the first step, and it is progressively moved to the 
bottom, as shown in Figure 12. If states on the same search 
boundary have the same bottom shape, their scores are 
compared, and only the state having the best score is selected. 
Finally, at the bottom of the table, the best cell candidate 
combination can be obtained. 

IV. EVALUATION 
We evaluated our method using three types of form 

document images. Set 1 consists of 50 images of fill-in forms 
without post-printed text (blank) containing 4693 cells, set 2 
consists of 15 images of estimate sheets with written text 
(written) containing 1041 cells, and set 3 consists of 17 
images of invoices (written) containing 2446 cells. 

Table I shows the results of cell extraction along with the 
recall and precision rates. In this evaluation, we used a cell 
extraction method using the conventional parallel ruled-lines 
method (Fig.1). The results of the proposed method are 
relatively more accurate than those of the conventional 
method. It is observed that the proposed method is effective 
especially for images that are difficult to recognize. Figure 
14 shows an example of the cell extraction results for the 
image containing an L-shape cell. 

Figure 11.  Examples of Cell Combination for each Line. 

Figure 12.  Procedure of Combinatorial Search of Cell Candidates 

Figure 13.  Examples of Form Image 
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Table II show the results in which correct ruled lines are 
used to extract cells. Although we expected the results to be 
perfect (100 %), some of the cells could not be extracted. 
Figure 15 shows one of the cases in which a cell was not 
extracted even when correct ruled lines were input. The 
number of intersections in our study was limited to 10 or 
lower, to suppress unnatural cells from being extracted; 
however, in this case, the cell was not extracted because the 
tracking path passed 12 intersections. 
 

TABLE I.  ACCURACY OF CELL EXTRACTION 

Conventional Proposed 
 Recall Precision Recall Precision

Fill-in form (blank) 75.7% 81.9% 80.0% 81.7% 
Estimate sheet (written) 87.1% 93.8% 87.9% 92.4% 

Invoice (written) 71.9% 77.6% 75.3% 79.0% 
Total 77.1% 83.3% 80.4% 83.1% 

 

TABLE II.  ACCURACY OF CELL EXTRACTION (WITH CORRECT 
RULED LINES) 

 Recall Precision
Fill-in form (blank) 99.0% 99.8% 

Estimate sheet (written) 99.0% 99.1% 
Written invoice (written) 99.1% 99.0% 

total 99.0% 99.5% 

 
 

 
Figure 14.  Examples of L-shaped Cells. 

 

 
Figure 15.  Case of Cell Dropping Out. 

V. CONCLUSION 
In this paper, we have described a cell extraction method 

that is effective even when the input ruled lines are unclear. 

This method consists of two substeps; (1) the cell candidate 
extraction method that uses intersection tracking and (2) the 
global optimization method that can obtain the optimal cell 
combination from multiple cell candidates using the DP 
algorithm. By using intersections which is more reliable than 
directly using ruled lines, our method achieved a higher 
accuracy than the conventional method used in this study, 
particularly, in low-quality images. 

As the next step, it is necessary to improve our method to 
achieve greater accuracy for extracting complex shape cells 
such as the one shown in Figure 15. In addition, we will 
improve the method for estimating the cell candidate’s log 
likelihood. To achieve the goals, we should use larger 
standard databases to evaluate the effectiveness of our 
method. This study is just the first step in perfecting cell 
extraction. We believe that further study of log likelihood 
estimation will make our method more practical. 
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