
α-Shape Based Classification with Applications to Optical Character Recognition

Eli Packer, Asaf Tzadok, Vladimir Kluzner
IBM Research - Haifa, Israel
{elip,asaf,kvladi}@il.ibm.com

Abstract—We present a new classification engine based
on the concept of α-shapes. Our technique is easy to imple-
ment and use, time-effective and generates good recognition
results. We show how to efficiently use the concept of
α-shapes of low dimension to support data in arbitrary
dimension, thus overcoming the lack of α-shape algorithms
in high dimensions. We further show how to inelegantly
choose suitable α’s to capture desirable shapes that tightly
bound the data. We present experiments showing that our
technique generates good results with Optical Character
Recognition (OCR) tasks. Based also on strong theoretic
properties, we believe that our technique can serve as a
desirable classification engine for various domains in addition
to OCR.

Keywords-Classification; Alpha Shapes; Optical Character
Recognition

I. Introduction

In the machine learning domain, a common scenario
is to train an engine with a set of known objects (both
their descriptions and class identifications) and then
classify unknown objects. The classification problem is
motivated in many areas and plays particularly a central
role in Optical Character Recognition (OCR for short),
the application on which we focus in this work. Using
feature vectors extracted from each sample is a popular
classification scenario. In this process, the classification
engine is trained with multiple feature vectors and then
classify unknown objects by extracting their feature
vectors and comparing them against the trained data.
Intuitively, the closer the classified feature vectors to
the trained ones, the higher the likelihood of the object
to belong to the corresponding class. In this work we
develop a classification engine based on the concept of
α-shapes. We next present it. Let S be an input point set
in IRm (m is an arbitrary integer). Given a parameter
α, let B(p, α) be the n-dimensional ball of radius α
centered at point p. Then the α-hull of S with radius α is
defined as Hα(S) = (

⋃

interior(B(p,α))∩S=∅,p∈IRm

B(p, α))c.

In words, the α-hull is the set of points that do not lie
in any empty open disk of radius α. If we substitute
the arcs of the α-hull with straight edges, we get the α-
shape. We denote the α-shape by Aα(S) (see Figure 1
for illustration). It is well known that the set of edges of
the α-shape is a subset of the Delaunay triangulation.
Note that the α-shape is a generalization of the convex

Figure 1. Clockwise from top-left: α-shapes (shaded) of increasing
α values

hull: When α approaches infinity, the α-shape converges
to the convex hull. As α shrinks, the shape shrinks too
and may generate tunnels and voids and may also be
split to several connected shapes. When α = 0, the
shape contains nothing but the input points. A central
objective of the α-shape is to capture the shape of a set
of points in IRm. In this work, we construct α-shapes to
form shapes to the feature vectors; each feature vector
can be viewed as a point in IRn. We can then determine
the likelihood of any feature vector to belong to the
class the α-shapes represent, based on its location with
respect to a specific α-shape. The closer the feature
vector to the α-shape, the higher the likelihood of it
to belong to the corresponding class. Using α-shapes for
that purpose has two limitations: 1) the unavailability of
efficient α-shape algorithms for any dimension beyond
three and 2) the necessity to determine a desirable α
with which a suitable shape is generated. In this work,
we explain how to efficiently overcome these limitations
to construct a reliable classification engine.

In this work we are interested in applying our tech-
nique for OCR tasks. The common recognition process
in this field usually consists of binarization, segmen-
tation, classification and post processing improvement
methods such as spelling checker. Our focus is in the
classification phase in which segmented components have

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.77

344

to be classified as a certain character. Related Work.
Over the years many classification techniques have been
developed. Among the most famous ones are: support
vector machines, neural nets, Ada-boost, decision trees
and K-nearest neighbors. The α-shape/hull concept was
introduced in [1]. A more recent work [2] extends the α-
hape concept to IR3. Lucieer and Kraak [3] constructed
α-shapes mainly for visualization purposes, but they also
used them for classification. However, their technique is
limited to IR3 and to a small number of features. Their
work is also limited by the fact that they appear to have
manually determined the value of α to fit their model.
Edelsbruner [4] presented an excellent survey of the work
devoted on α-shapes over the years. The rest of the paper
is constructed as follows. In the next section we describe
our classification engine. In Section III we describe
the advantages and the usefulness of our technique. In
Section IV we present experiments we performed with
our implementation. We conclude in Section V.

II. α-Shape Classification Engine

Given a set of classes C, each of which is represented
by multiple feature vectors obtained from multiple
samples, we build a classification engine as follows. Let
c ∈ C be any class with feature vectors Vc. We partition
Vc to pairs and for each construct a two-dimensional α-
shape. When classifying an unknown sample u, we test
it against any c ∈ C. For each c ∈ C, we partition u to
pairs in the same way we partitioned Vc and compute
the distance of each pair of u from the corresponding α-
shape1. Summing up the results of all pairs, we can
determine the likelihood of the sample to be c. We
explain our technique by showing how to build one
α-shape (Subsection II-A). Then we describe how we
collect the α-shapes into a set that represents a single
class. We then explain how we score a sample against a
class (Subsection II-B).

A. Determining α

Determining α is a crucial step in the construction of
the α-shape. Only certain values of α will incur desirable
shapes. The right shape is notably subjective and may
be ambiguous in different scenarios. In Figure 1, for
example, the top-left figure might appear to be the
shape of the points, since the other figures seem to
capture redundant space. However, only certain values
of α will yield the shape on the top-left figure. We next
formalize the way to choose α so that the corresponding
α-shape will reliably capture the areas that include
points. We choose an α that is the minimum with which
the following condition holds true: Condition 1. Aα(S)

1If u is contained in the α-shape, the distance is defined to be
0. Alternatively, we can compute the distance from the skeleton of
the α-shape. We did not implement this alternative for this work.

Figure 2. Different α-shapes obtained with our software; The
ratio |Aα(S)|/|B(S)| increases from top to bottom and from left
to right

contains disjointed polygons that collectively contain
all input points. The polygons may have holes, each
of which may have islands and so on. We continue by
making a few observations about the properties of the
α-shapes.

Lemma 2.1: Let α1 and α2 be two positive values such
that α2 < α1. Then Aα2

(S) ⊆ Aα1
(S).

Proof: Let Cα(S) be the union of all empty balls of
radius α with respect to S. Note that every empty ball
of radius α1 can be formed by an infinite collection of
empty balls of radius α2 < α1. Then Cα1

(S) ⊆ Cα2
(S).

Based on the definition of α-shape, it follows that
Aα2

(S) ⊆ Aα1
(S).

Lemma 2.2: There exists a minimum α > 0 for which
condition 1 holds and any α′ > α satisfies condition 1
as well.

Proof: From Lemma 2.1, if condition 1 holds for
a certain α, it follows that it also holds for any α′ >
α. Since when α = 0, Aα(S) contains just the input
points, and condition 1 is violated. For sufficiently large
α, the α-shape notably coincides with the convex hull,
and condition 1 clearly holds. Then there must be a
minimum α > 0 as the lemma claims.
Finding the minimum α for condition 1 and building
the corresponding α-shape, we get a tight shape that
includes all points. Let R be the diameter of S. Based
on Lemma 2.2 we find the minimum desired α with a
binary search on the values (0 . . . R) with a sufficient
small ε-tolerance (Note that for any α ≥ R, Aα(S)
coincides with the convex hull of S.) For each α of the
binary search, we build the α-shape [1] in O(n log n)
time and check whether it consists of disjoint polygons
that collectively include all points of S. We do this by
constructing a trapezoidal decomposition of the shape
and marking each trapezoid as belonging or not belong-
ing to the shape (time O(n log n)). Then we perform
point location queries for each point of the input to test

345

whether it is located inside a cell that belongs to the
shape (together time O(n log n)). Based on the above
description, the number of iterations of the binary search
is O(log R

ε
) and each iteration consumes time O(n log n).

We conclude with the following theorem:
Theorem 2.3: We find the minimum α and construct

its α-shape in time O(n log(R
ε
) log n).

B. Using α-shapes for Classification

Since no available efficient constructions exist for α-
shapes in high dimensions (today the known efficient
algorithms are in IR2 and IR3), we partition the feature
vectors to pairs and construct an α-shape for each2.
Thus, we must come up with a criteria for pairing up
the features. We use the following rule. Consider all
possible pairs and let Q be the set of points in any. Sort
the pairs by increasing ratio of |Aα(Q)|/|B(Q)| where
B is the axis aligned bounding box of Q (see Figure 2).
Then we greedily collect α-shapes such that each feature
vector appears in at most one α-shape. We further hold
a threshold T to avoid using pairs with ratios larger
than T . This means that potentially some of the feature
vectors will have no partners. We will use them instead in
an IR1 structure that calculates the normalized distance
from the center of mass. These structures will appear
after the α-shapes in the sort. In the classification phase,
we then partition the features of the tested object for
each class accordingly and sum up the distances for each
class to get a numeric result for each. The smaller this
sum is, the higher the likelihood that the tested instance
belongs to the class3. We use the following optimizations
for speeding up the process. 1) While constructing the
α-shapes, we use some of the input samples for testing.
We continue adding pairs in their order (see above)
and after each addition, we test the rate of correctly
classifying the tested characters. We stop when we see a
high correct classification rate. 2) After the construction
of the α-shapes, we should have a solid numeric criteria
on a threshold for accepting or rejecting a character.
Then, during the classification phase, we reject when we
reach this threshold, and we do not continue processing
the input with all α-shapes. Since the tested sample
should be rejected by most classes, we can likely stop
processing and reject it early. This was the case in our
experiments. To determine whether a point is inside the
α-shape and calculate the distance from its boundary, we
use a line-segment Voronoi diagram [5]. Constructing the
Voronoi diagram takes O(n log n) time and each query
takes O(log n) time. To save multiple location queries,
we overlay α-shapes of different classes that share the
pair of features. We mark each induced cell with the

2We are planning to extend the engine to IR3 in the future—the
same ideas we present in this report hold in IR3 too

3Note that we normalize the feature vector values.

nearest edges of each class. Suppose there are k classes,
each of which has a certain α-shape of the same pair
of features. then instead of performing k queries we can
then query once. The following theorem summarizes our
technique.

Theorem 2.4: Constructing the α-shape classification
engine takes O(km2n log(R

ε
) log n) time and O(kmn)

space where k is the number of classes, m is the size of
the feature vector space, and n is the maximum number
of samples taken for a class, R is the largest diameter of
any points obtained with pairing up two features in any
α-shape, and ε is the tolerance parameter for the binary
search we defined above. Each query takes O(km log n)
time.

Proof: The complexities of the classification engine
derive from multiplying the construction complexity of
each α-shape by the number of times we construct (for
time) and keep (for space). Each classification query
involves querying each class; note that each has O(m)
α-shapes. Since each α-shape query takes O(log n) time,
the query time follows.

III. Discussion: Advantages of our Technique

We found our technique very useful in several aspects.
We discuss them and the motivation to use our tech-
nique for classification applications. Using shapes that
geometrically capture the feature vector data is the basis
of our technique. By computing suitable α values, we
obtain a data structure that tightly bounds the regions
belonging to a specific class. As opposed to statistical
techniques like Mahanalobis distance, we do not make
any assumptions regarding the distribution, and thus
we are more robust to any distribution. Having these
properties, our technique is suitable for determining
whether a specific element belongs to a class (this pro-
cess is called one-class classification). Performing one-
class classification is important in several applications,
such as in marking noise for exclusion from a result.
Bounding the region tightly, we increase the chances
that noise will be excluded from any class and thus not
included in the result. In Section IV-A, we demonstrate
the importance of removing noise in OCR tasks. Our
technique takes advantage of the correlation of two
features. Consider Figure 2: suppose we project the
features onto one of the axes. This results in the samples
covering the entire range. However, it is the shape in IR2

that adds important classification information that may
be crucial for obtaining reliable results. Our technique
is simple to understand, implement, and use. Its direct
geometric definition makes it easy to understand and
should provide improvement ideas in the future. Our
technique uses well-known geometric data structures
that are today available in geometric libraries. It is easy
to use because it does not require parameter settings

346

as other techniques do (e.g. Neural Nets and Support
Vector Machines). Automatically computing the data
structures, we release the user from making tedious
parameter settings. Our technique is flexible for different
kinds of data and tasks. We can use it to seamlessly work
on one, two or multiple classes. It can also work on any
dimension with arbitrary large feature vectors.

IV. Experiments

We experimented with two kinds of OCR tasks. The
first is related to Gothic characters obtained by scanning
old library books. The second is the segmentation of
screen antialiased text.

A. Old Gothic Characters

Printed heritage digitization is a central challenge in
the IMPACT project [6] that deals with text recognition
of old library books for indexing and searching purposes,
using OCR techniques. A major obstacle in recognizing
the text is that many defects appear over time, as
illustrated in Figure 3. These defects result in mean-
ingless segmented components that confuse the OCR
engines which classify them as characters. To solve this
problem, we must classify these cases as junk instead.
Our data consist of Gothic characters retrieved from [7].
We segmented the characters using the OCR software
of ABBYY [8]. We used our engine to classify junks in
the following way. After training the engine, we used
other samples to learn two types of scores—one is when
a sample is computed against its class and the second
is when a sample is computed against different classes.
Using k-means (where k = 2), we find a threshold T ,
such that if the score we get is larger than T , we conclude
that it does not belong to the class. Otherwise, it does
belongs.

Our results showed a clear gap between these two
types of scores. We omitted a very few outliers that
gave large scores to images of the same character. To
choose whether a segmented character is junk, we then
calculated the scores and compared the lowest one (L)
against T . We classified this as junk if L > T . To
evaluate our technique, we compared it with the K-
nearest neighbor (where we set K = 5; this value
gave us the best results), Mahanalobis distance and
convex hulls techniques. The later comparison is done
by simply replacing the α-shape of our engine with
the convex hull. The idea is to see by how much,
if at all, shrinking the convex hull helps. For each
competing technique, we also found a corresponding
threshold for rejecting characters. We tested 70 classes
and incidents of junk (spot, smearing elements, etc.).
For each character, we had at least 30 input samples.
Together the database includes 3200 samples. Out of

Figure 3. Examples of common defects that appear in old books;
left to right: reflection of the opposite page, spots, erased characters
and smearing

these, we used all but five samples to construct the α-
shapes and used the remaining five for testing. In our
experiment, we calculated how many samples had false
negative classification (rejecting them from their correct
class) and how many had false positive classification
(accepting the character as belonging to a wrong class).
Our α-shape engine gave the best results, as summarized
in Table I. The advantage over using the Mahanalobis
distance can be explained by the fact that the feature
vector distribution is not Gaussian. We also calculated
the training and querying time. The average time it
took to build a set of α-shapes for a single class was
5.25 seconds. This time included the computation of
2500 α-shapes, each with a time of 0.0021. This process
should occur once during the training of the engine,
and then the data can be saved for further processing
in the future. The average time of each test query was
3.68e−4. We finally note that the features we used to
construct the feature vectors are Harr, Schlick, Affine
and Projection [9]. Since we used different variations for
each kind of feature, we generated a vector 58 atomic
features for each sample.

α- Convex K-nearest Majanalobis
shape hull neighbor distance

False negative rate 1.8% 4.5% 2.2% 4.7%
False positive rate 5.2% 13.5% 7.3% 9.6%

Table I
False positive and false negative rates for classifying old Gothic

font

B. Segmenting Antialiased Text

the most popular way to make screen characters
appear smoother is to convert them to antialiased char-
acters. During the conversion, characters tend to smear
and sometimes touch neighbor characters. This, in turn,
makes the segmentation and recognition more difficult.
Another issue is that the pixels of the characters depend
on the neighborhood and thus cannot be precisely learnt
in advance. When characters touch one another, we need
to separate them for further recognition. However, de-
termining which components belong to which character
(or characters) is diffcult. In most cases, the erroneous
connection of two characters is weak (see Figure 4) and
can be detected to assist with the separation of the
characters. Unfortunately, we cannot simply separate

347

(a) (b) (c) (d)

Figure 4. Antialiased text: the top row of each subfigure contains
characters that became connected in the process of antialiasing;
the bottom of each subfigure contains single characters that have
weak connections between two parts. (a) The characters being
antialiased (b) Binarization of the antialiased text (c) Marking the
areas of weak connections (d) The two parts of each component
after separation

components at weak connections because some single
characters also have weak connections among their own
parts (see Figure 4). Thus, we must have good criteria
for determining when to break components. We used our
technique for this task on image characters generated
with a Windows character generator API. The idea is
that components that correspond to single characters
will get low score in comparison to components that
belong to more than one character. For each component
with a weak connection, we computed the score of
both the entire component and the two parts. When
separating the character into two parts, we computed
the average score of each. We compared the scores
to thresholds learned in advance to decide whether to
separate the characters. We tested against the same
classifiers we used in Section IV-A. For each case, we
compared the score obtained for testing both the full
component and the two induced parts. We measured the
rate of errors (categorizing two merged characters as one
and categorizing one character as two). The error rates
are summarized in Table II. We again we achieved good
results that defeated the other classification techniques
we tested against.

α- Convex K-Nearest Majanalobis
Shape Hull Neighbor Distance

Error rate 7.5% 16.7% 8.1% 17.3%

Table II
Error rates for segmenting antialiased text

V. Conclusions

We presented a novel technique for classification tasks
in feature-based learning engines. We developed a new
data structure based on α-shapes. Our technique takes
advantage of the correlation of features and their ability
to tightly define regions that represent classes. We
implemented our technique and experimented with two
kinds of OCR tasks, from which we obtained good
results. Using our technique as a general classifier gave
good results as well. We hope to also establish our

technique for that purpose in the future. We envision
continuing in several directions to improve the success
rate of our technique. By efficiently expanding our
method to higher dimensions, we may be able to capture
correlations of several features that can assist in further
improving our results. This is a challenging task, since
the α-shape algorithm was so far devoted to only IR2 and
IR3. Other possible extensions involve using weighted α-
shapes, in which different points have different weight,
and modifying the α-shape by dilating it based on
local curvature. Both approaches should provide us more
flexibility with the distance calculation.

Acknowledgment

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme FP7/2007-201 under grant
agreement 215064. The authors thank Dan Chevion for
helpful discussions.

References

[1] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On
the shape of a set of points in the plane,” IEEE Trans.
Inform. Theory IT-29, pp. 551–559, 1983.

[2] H. Edelsbrunner and E. P. Mucke, “Three-dimensional
alpha shapes,” ACM Trans. Graph., 1994.

[3] A. Lucieer and M.-J. Kraak, “Alpha-shapes for visualiz-
ing irregular-shaped class clusters in 3d feature space for
classification of remotely sensed imagery,” Visualization
and Data Analysis, 2004.

[4] H. Edelsbrunner, “Alpha shapes - a survey,” in Tes-
sellations in the Sciences; Virtues, Techniques and Ap-
plications of Geometric TilingsVisualization and Data
Analysis, 2010.

[5] C. Burnikel, K. Mehlhorn, and S. Schirra, “How to com-
pute the voronoi diagram of line segments: Theoretical
and experimental results,” in Proceedings of the Second
Annual European Symposium on Algorithms, ser. ESA
’94, 1994, pp. 227–239.

[6] IMPACT Project. http://www.impact-project.eu.

[7] C. von Eckartshausen, Aufschlüsse zur Magie aus
geprüften Erfahrungen über verborgene philosophische
Wissenschaften und verdeckte Geheimnisse der Natur.
Lentner, 1791.

[8] ABBYY. http://www.abbyy.com/.

[9] M.-K. Hu, “Visual pattern recognition by moment invari-
ants,” Information Theory, IRE Transactions on, vol. 8,
pp. 179–187, 1962.

348

