
Stroke-Based Performance Metrics for
Handwritten Mathematical Expressions

Richard Zanibbi
rlaz@cs.rit.edu

Amit Pillay
aap2731@rit.edu

Department of Computer Science
Rochester Institute of Technology, NY, USA

Harold Mouchère
harold.mouchere@univ-nantes.fr

Christian Viard-Gaudin
christian.viard-gaudin@univ-nantes.fr

LUNAM, Université de Nantes
IRCCyN, France

Dorothea Blostein
blostein@cs.queensu.ca
School of Computing,

Queen’s University, Canada

Abstract—Evaluating mathematical expression recognition
involves a complex interaction of input primitives (e.g.
pen/finger strokes), recognized symbols, and recognized spatial
structure. Existing performance metrics simplify this problem
by separating the assessment of spatial structure from the
assessment of symbol segmentation and classification. These
metrics do not characterize the overall accuracy of a pen-
based mathematics recognition, making it difficult to com-
pare math recognition algorithms, and preventing the use of
machine learning algorithms requiring a criterion function
characterizing overall system performance. To address this
problem, we introduce performance metrics that bridge the gap
from handwritten strokes to spatial structure. Our metrics are
computed using bipartite graphs that represent classification,
segmentation and spatial structure at the stroke level. Overall
correctness of an expression is measured by counting the
number of relabelings of nodes and edges needed to make
the bipartite graph for a recognition result match the bipartite
graph for ground truth. This metric may also be used with
other primitive types (e.g. image pixels).

Keywords-Performance Evaluation; Math Recognition;
Handwriting Recognition; Graphics Recognition

I. INTRODUCTION

Evaluating the performance of document analysis systems

is an important and difficult problem. As recently sum-

marized by Silva [1], much of the difficulty stems from

diversity in goals, input types, input domains, concepts,

output granularity, evaluation moments, and evaluation met-

rics. Our work focuses on addressing performance evaluation

issues that arise due to diversity in granularity. Performance

metrics are simpler to define for computations in which

input and output items have similar granularity. In the case

of math recognition, the granularity differs markedly, with

a spatial arrangement of strokes or symbols as input, and

a hierarchical layout description (e.g. LATEX, see Figure 1)

and/or representation of meaning (e.g. Content MathML,

OpenMath) as output. There is a need for standard metrics

that permit meaningful comparison of math recognition

results [2], [3], both for comparing systems, and for use

with machine learning algorithms that optimize system per-

formance.

Our primary contribution is a bipartite graph-based rep-

resentation of expression structure at the level of prim-

itives (e.g. strokes), that captures errors in both recog-

nized symbols and layout. We were motivated to use a

representation at the primitive rather than symbol level,

because the distinction between symbol segmentation and

structure recognition is sometimes blurred. For example, the

configuration “=” can be viewed either as a single symbol

consisting of two spatially separated strokes, or as two

symbols (short horizontal lines) with one atop another. We

consider isolated expressions in this paper, but our method

may be adapted in a straight-forward manner for multiple

expressions, flowcharts, tables, and even images using pixel

regions such as connected components or image patches.

The second contribution of the paper is a set of new error

metrics based in our bipartite representation. This includes

metrics that characterize overall recognition accuracy, pro-

viding a criterion function for expressions, based on strokes

as primitives; existing criterion functions use symbols as

primitives, as discussed in Section II.

We assume that it is possible to define a ground truth

interpretation for a given set of strokes. This excludes

undersegmented strokes, in which a single stroke is used

to produce two items that must be represented separately in

\frac{a}{bˆd}

a) Input b) LATEX

hline

aU

b

D

d
Sup

c) Symbol Layout Tree (U: up, D: down, S: superscript)

Figure 1. Handwritten Expression Containing Five Strokes and Four
Symbols. A LATEX string (b) or equivalent Symbol Layout Tree (c) may
be used to represent symbol arrangement

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.75

334

the ground truth interpretation (e.g. for a cursive ‘ax’ written

using a single stroke, but containing two symbols).

For detailed performance analysis, different metrics are

needed to characterize accuracy for specific tasks: segmenta-

tion, classification, and parsing. However, in some situations

a single value characterizing performance is needed, such as

when using machine learning algorithms to optimize system

performance as a whole. Thus, in this paper, we discuss

several component metrics (section IV) and also discuss

methods of combining these into a single overall estimate

of performance (Section V).

II. PREVIOUS WORK IN EVALUATING MATH

RECOGNITION

Mathematical expression recognition is an active research

field, both for on-line and off-line data [4], [5], [6], Ground-

thruthed dataset are now available (e.g. [7] (off-line) and

[8] (online)). As pointed out by both Lapointe and Blostein

[2] and Awal et al. [3], the math recognition domain now

needs standard evaluation metrics to support comparisons of

existing and newly developed systems.

Most existing approaches to evaluating math recognition

compute a distance between the recognized expression and

the ground truth, according to different aspects. The expres-

sion recognition rate is common, but global and relatively

uninformative, as it counts only expressions that precisely

match ground truth. Symbol recognition rate does not con-

sider symbol layout; Baseline recognition checks only if

symbols appear on the correct baseline relative to a symbol.

Some metrics, such as the average performance index [9]

weight errors depending on the depth of nesting for baselines

in an expression.

A difficulty in defining an accuracy metric for symbol

layout in math, is that the tree-based representation needed to

represent symbol layout is unsuitable for use with classical

metrics used for text recognition, such as the Levenstein edit

distance. One solution is to use tree-edit distance, but this

is not used in practice, because of the NP complexity of

the existing algorithms to match both tree edges and nodes.

An interesting solution by Garain et al. [10] proposes to

transform the tree into a token string which allows one to

use a edit distance. The drawback of this approach is that it

looses some of the edit operations offered by tree edits (like

swapping children of a node), leading them to incur high

cost in the string-based representation.

Our main contribution is a bipartite graph representation

of expression structure at the level of strokes, from which

metrics based on Hamming distances may be simply de-

fined, with an intuitive interpretation. Given a set of input

primitives for a test expression, our representation prevents

the need to match individual strokes, so that only stroke

labels and layout relationships between strokes need to be

matched, as described in the next section.

III. EXPRESSION REPRESENTATION

In our approach, the recognizer output and ground truth

interpretations must first be converted into bipartite graphs.

This is illustrated in Figures 2 and 3. The bipartite represen-

tation is shown in Figure 3a), where the nodes of the graph

represent each stroke in the expression twice: as an unlabeled

input stroke (at left), and with an assigned symbol label

and detected relationships (at right, with spatial relationships

shown as incoming edges). Note that there are N(N − 1)
edges in this graph, where N is the number of strokes, and

we omit edges from strokes to themselves. For legibility,

edges representing ‘no relationship’ are not drawn.

This bipartite graph is constructed from a symbol layout

tree: strokes in symbol nodes are split into separate stroke

nodes (see Figure 2a), with each stroke possessing the spatial

relationships of its associated symbol. All stroke nodes

inherit the spatial relationships of their ancestors in the

layout tree. In Figure 2b, the two strokes corresponding to

the ‘d’ inherit the ‘Down’ spatial relationship of the single-

stroke ‘b.’ Note that this inheritance applies to all spatial

relationships, including containment by square roots, and

horizontal adjacency: for example, in ‘k + m’, m inherits

the ‘Right’ relationship of the + relative to the k.

The information presented in the DAG in Figure 2b) can

then be converted directly into a bipartite graph, as shown in

Figure 3a). Note that strokes with the same set of incoming

spatial relationships in Figure 3a are symbols, i.e. stroke
relationships induce a segmentation of strokes into symbols.
It is easier to visualize differences in interpretations using the

bipartite representation (as node positions in the graph may

be fixed across interpretations), but it is easier to visualize

interpreted layout from the DAG representation.

To evaluate symbol segmentation separately from layout,

we may use a second bipartite graph: see Figure 3b). An

undirected edge is placed between all pairs of non-identical
strokes belonging to a symbol. Thus a symbol composed

of 3 strokes is represented by 6 edges; one isolated stroke

corresponding to a symbol is not connected.

hline
s2

a
s1U

b
s3

D
d
s4Sup

d
s5

Sup

�����
��

	
�

�

�
�

� �
��

�

�
��

�

���

���

a) Stroke Layout Tree b) Stroke Layout DAG

Figure 2. Stroke-level Ground Truth Representations for Expression in
Figure 1a). Strokes are labeled using s<num>. In b), the stroke layout tree
is converted to a DAG by adding incoming spatial relationships at a node
to all of its descendents. Spatial relationships are represented by U: up, D:
down, Sup: superscript, Sub: subscript, and R: right

335

�� �
��

��
���	

��

��
�
��

�
 �
�

���

�
��

���

�

�

�

�

��

�
��

�
��

����	
�

����	
�

�
��

�
��

��

��

��

��

a) Stroke labels and layout b) Segmentation

Figure 3. Bipartite Graphs Representing the Expression in Figure 1. Nodes
represent strokes, and labeled edges represent spatial relationships. In a),
symbol classes are shown using node labels, and spatial relationships using
edge labels. This graph represents the same information as in Figure 2b). In
b) a segmentation graph is shown, in which strokes belonging to a symbol
are connected

IV. METRICS FOR SPECIFIC ERROR TYPES

Given two bipartite graphs representing recognizer output

and ground truth for strokes in a handwritten math expres-

sion, recognition errors may be found directly as disagreeing

node or edge labels. A number of examples are provided in

Figure 4; incorrect labels and relationships relative to ground

truth are shown in red.

a) mislabeled stroke (1 error, ΔC)

b) misrecognized relationships (2 errors, ΔL)

c) segmentation error, where the ‘d’ has been split into two

symbols. There are two mislabeled strokes (classification

errors), and a spurious spatial relationship between s4 and

s5 (3 errors)

d) error similar to that in c), but with the stem of the ‘d’

misrecognized as being above the fraction line; there is

also a missing relationship between s3 and s5 (5 errors)

These errors are summarized in Table I. Additionally,

one may count the number of disagreeing stroke pairings

in segmentation graphs as illustrated in Figure 3b) (ΔS).

In Figure 4c) and d), two segmentation graph edges from

ground truth are missing.

For a set of strokes S and two expressions defined on

S represented by bipartite graphs E1 and E2, we define the

metrics below for specific stroke properties. Let U be the set

of all non-identical stroke pairs: U = {(p, q) ∈ S×S | p �=
q}, where |U | = |S||S − 1|.

Each metric below is a Hamming distance, specifically

the number of disagreeing labels/relationships. As such,

each satisfies the four requirements for a metric [11]:

non-negativity, symmetry (Δ(E1, E2) = Δ(E2, E1),

Δ(E1, E1) = 0, and the triangle inequality:

Δ(E1, E3) ≤ Δ(E1, E2) + Δ(E2, E3).

• Classification (ΔC): The number of strokes with dif-

ferent symbol labels in the expression graphs E1 and

E2:

ΔC(E1, E2) = |{s ∈ S | lab(s, E1) �= lab(s, E2)}|
(1)

• Layout (ΔL): Let L1 and L2 be the set of labelled

edges in expression graphs E1 and E2. Layout dis-

agreement is the number of disagreeing edge labels

between non-identical strokes:

ΔL(E1, E2) = |U | − |L1 ∩ L2| (2)

• Segmentation (ΔS): This is defined similarly to lay-

out, but using undirected segmentation bipartite graphs

(see Figure 3b) B1 and B2 constructed on the set of

strokes for each symbol relation tree.

ΔS(E1, E2) = |U | − |B1 ∩B2| (3)

V. EXPRESSION-LEVEL DISTANCE METRICS

We now combine our metrics for specific error types

(classification, segmentation, and layout) into Expression-

Level Distance Metrics that define a single distance measure

for two interpretations of an expression. First consider the

distance metric ΔB ∈ [0, 1] defined as the number of

disagreeing stroke labels and spatial relationships, such as

shown in the thumbnail images of Figure 4. This is a

Hamming distance, with |S|2 elements in each vector of

node/edge labels for a graph.

ΔB(E1, E2) =
ΔC +ΔL

|S|2 (4)

This metric is unweighted, and as a result will produce less

distance for classification errors than errors in layout and

segmentation (represented implicitly in the layout relation-

ships).

As an absolute measure of the difference between two

bipartite graphs ΔB is sufficient, but one may want to

weight errors to make classification errors proportional to

segmentation and layout errors. In particular, when compar-

ing algorithms for use in practice, or when using machine

learning to optimize the complete recognition system, one

may want to weight the different error types.

We define metric ΔE ∈ [0, 1] as the average per-stroke

classification, segmentation and layout errors:

ΔE(E1, E2) =

ΔC(E1,E2)
|S| +

√
ΔS(E1,E2)

|U| +
√

ΔL(E1,E2)
|U|

3
(5)

We use the square root of the segmentation and spatial

relationship distances in order to make them proportional to

|S| rather than |S|2 (one could instead divide ΔL and ΔS

336

a
6d

a
bd

�����
��

	
�

�

�
�

� �
��

�

�
��

�

���

���

hline
s2

a
s1

U

b
s3

D
d
s4

D

d
s5

D

R

R

a) Classification Error (b → 6) b) Layout Error (Sup → R)

a
b01

a1
b0

hline
s2

a
s1

U

b
s3D

0
s4

D 1
s5

D

Sup
Sup

R

hline
s2

a
s1

U

b
s3

D 0
s4

D

1
s5U

Sub

Sup

c) Classification and Segmentation (d → {0,1}) d) Classification, Segmentation and Layout

Figure 4. Example Recognition Errors for Expression in Figure 1. In the DAGs errors are shown in red, and by filled nodes and edges in the bipartite
graphs. In the bipartite graph thumbnails, nodes correspond to strokes as shown in Figure 3. In part d) there are five errors: the ‘d’ has been separated
into two mis-classified strokes, with two spurious spatial relationships (U and Sub), and one missing relationship (the superscript between the ‘b’ and the
vertical line in the ‘d’).

Table I
DISTANCE BETWEEN EXPRESSIONS IN FIGURE 4 AND GROUND-TRUTH

IN FIGURES 2B) AND 3A)

Fig. 4 ΔC ΔS ΔL ΔB ΔE

a) 1 0 0 0.04 0.067

b) 0 0 2 0.08 0.105

c) 2 2 1 0.12 0.313

d) 2 2 3 0.2 0.368

by |S − 1| for the same reason). This prevents differences

in segments and spatial relationships from being weighted

less heavily than differences in stroke (symbol) classification

labels. As each component distance is in [0, 1], ΔE also lies

in the interval [0, 1].

ΔB and ΔE are proper metrics. They are non-negative,

symmetric, and the distance from a layout tree to itself is

0. As the square root of non-negative values is an order-

preserving monotonic function, the square root of a metric

is also a metric. Given that ΔC , ΔS and ΔL are proper

metrics, their sum obeys the triangle inequality by definition.

Similarly, using the average of their sum does not invalidate

the metric property.

Both ΔB and ΔE require O(|S|2) time to compute. In

practice, |S| tends to be relatively small, and so the quadratic

complexity is not a significant concern. Further, absent

spatial relationships need never be explicitly compared: we

can simply count labels and relationships present in at least

one of the two input graphs.

In order to illustrate and compare these metrics, Table I

shows these five distances between errors and its ground-

truth. Notice that classification errors are weighted more

heavily, and that in general the computed distance/error

value is higher for ΔE than ΔB .

VI. GENERALIZATION: SEGMENTS AND PIXELS

We have assumed that no stroke corresponds to more than

one symbol in the input (i.e. no stroke is under-segmented).

This assumption may be removed if we use finer-grained

primitives, such as line segments rather than whole strokes.

A single stroke containing the two symbols ax can then be

partitioned, and the resulting segmentation evaluated.

Document images often have some symbols overlapping

within a single connected component, such as in: y
x , where

the fraction line and y may intersect. In this case we

can deconstruct connected components into smaller sub-

components that correspond to small contiguous regions,

or as a more extreme approach, taking pixels to be the

primitives.

Using the smallest possible primitives (e.g. pixels) is

attractive because under-segmentation cannot occur; how-

ever, efficiency may become a problem, as the bipartite

graphs/DAGs would be very large. Pixel-level ground truth is

imprecise; however, this level of ground truthing is common

in computer vision, where it is understood that the human

interpretation involved in constructing ground truth results in

residual ‘errors’ for decisions within ambiguous regions (e.g.

337

identifying the specific split point between two connected

symbols drawn with a single stroke (e.g. ax)).

With appropriate primitives, the metrics presented may be

used as criterion functions for machine learning algorithms.

In most cases, losses for errors in stroke labeling and

relationships will need to be ‘softened’ to values in [0, 1]
rather than {0, 1}, e.g. to avoid discontinuities in the error

surface when using algorithms based on gradient descent.

These ‘soft’ errors may be obtained using additional metrics

for stroke labels and relationships (e.g. probabilities or fuzzy

values).

VII. CONCLUSION

We have presented new metrics for comparing the sim-

ilarity of two interpretations of a set of online strokes,

with application to pen-based mathematics recognition. Our

approach is novel in that it uses strokes rather than symbols

as the basis for comparing symbol and structure recognition

results. This has the advantage of providing a broader char-

acterization of system performance, allowing expression-

level performance to be assessed in terms of input primitives.

Our metrics can be efficiently computed, in time O(n2),
where n is the number of strokes. Note that handwritten

expressions typically consist of a relatively small number

of strokes. The approach can also be easily adapted other

pen-based domains, such as recognition of flowcharts, and

for use in images.

An open question is whether the metric can be usefully

applied when one cannot assume that the sets primitives

for two recognition results being compared match (e.g. for

Mathematical Information Retrieval (MIR) applications). A

related issue is defining metrics for evaluation of mathe-

matical content (i.e. mathematical syntax of a recognized

expression); the method presented in this paper addresses

only evaluation of layout. As mathematical content is nor-

mally represented hierarchically by operator trees, it may

be possible to employ a bipartite graph-based approach to

evaluation there as well, again using input primitives as the

nodes in the graph.

Acknowledgements: This material is based upon work

supported by the National Science Foundation under Grant

No. IIS-1016815, the Natural Sciences and Engineering

Research Council of Canada, the Xerox Foundation, and the

Center for Emerging and Innovative Sciences (NYSTAR).

REFERENCES

[1] A. Sliva, “Metrics for evaluating performance in document
analysis: application to tables,” Int’l J. Document Analysis
and Recognition, vol. 14, pp. 101–109, 2011.

[2] A. Lapointe and D. Blostein, “Issues in performance evalu-
ation: A case study of math recognition.” IEEE Computer
Society, 2009, pp. 1355–1359.

[3] A.-M. Awal, H. Mouchere, and C. Viard-Gaudin, “The
problem of handwritten mathematical expression recognition
evaluation,” in Int’l Conf. on Frontiers in Handwriting Recog-
nition, Kolkata, India, 2010, pp. 646–651.

[4] D. Blostein and A. Grbavec, “Recognition of mathematical
notation,” in Handbook of Character Recognition and Docu-
ment Image Analysis. World Scientific Publishing Company,
1997, pp. 557–582.

[5] K.-F. Chan and D.-Y. Yeung, “Mathematical expression
recognition: a survey,” International Journal on Document
Analysis and Recognition, vol. 3, pp. 3–15, Aug 2000.

[6] U. Garain and B. Chaudhuri, OCR of Printed Mathematical
Expressions. Springer, 2007, pp. 235–259.

[7] S. Uchida, A. Nomura, and M. Suzuki, “Quantitative analysis
of mathematical documents,” Int’l J. Document Analysis and
Recognition, vol. 7, no. 4, pp. 211–218, 2005.

[8] S. MacLean, G. Labahn, E. Lank, M. Marzouk, and
D. Tausky, “Grammar-based techniques for creating ground-
truthed sketch corpora,” Int’l. J. Document Analysis and
Recognition, vol. 14, no. 1, pp. 65–74, 2011.

[9] U. Garain and B. Chaudhuri, “A corpus for OCR research on
mathematical expressions,” Int’l J. Document Analysis and
Recognition, vol. 7, no. 4, pp. 241–259, 2005.

[10] K. Sain, A. Dasgupta, and U. Garain, “Emers: a tree
matching-based performance evaluation of mathematical ex-
pression recognition systems,” Int’l J. Document Analysis and
Recognition, no. 14, pp. 75–85, 2011.

[11] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed.
Wiley, 2001.

338

