
Baseline Dependent Percentile Features for Offline Arabic Handwriting Recognition

Pradeep Natarajan, David Belanger, Rohit Prasad, Matin Kamali, Krishna Subramanian, Prem Natarajan
Raytheon BBN Technologies

10 Moulton Street, Cambridge, MA 02138, USA
{pradeepn,dbelange,rprasad,mkamali,ksubrama,pnataraj}@bbn.com

Abstract—Handwritten text in Arabic and other languages
exhibit significant variations in the slant and baseline of
characters across words and also within a single word. Since
the concept of baseline does not have a precise mathematical
definition, existing approaches use heuristic methods to first
identify a set of baseline relevant pixels and then fit lines/curves
through them. However, for statistical features like percentiles
that we use in our system, we only need an approximate
curve that is close to the baseline to normalize the features.
Hence we propose a two stage approach to estimate the
approximate baseline. First we segment the text line into a set of
components, and then estimate the baseline in each component
using two methods - max projection and smoothed centroid
line. We incorpate the computed baseline into percentile feature
computation in the BBN Byblos OCR system for an Arabic
offline handwriting recognition task. Our new features, result
in a 1% absolute gain and 3.1% relative gain in the word error
rate on a large test set with 15K handwritten Arabic words,
which is statistically significant with p-value<0.001 using the
matched pair comparison test. Further, our results show that
computing fine-grained baselines from small line segments is
significantly better than estimating a single baseline over the
entire text line.

Keywords-Feature Extraction, Baselin-dependent percentile,
handwriting recognition

I. INTRODUCTION

In recent years, advanced digital scanning technolo-
gies and cheap memory have become ubiquitous. This
has resulted in the availability of large amounts of digi-
tally scanned documents in many languages from differ-
ent sources. Automated analysis and understanding of the
information in these documents can have a wide range of
applications. Despite significant progress in optical charac-
ter recognition (OCR) and handwriting recognition (OHR)
technologies, several challenges remain.

A key difficulty is the variation in baseline of handwritten
text not only between words but even within a word. As
a result, the shape of handwritten glyphs vary not only
across different writers, but also across different instances
written by the same writer. Thus, accurate estimation of the
baseline is crucial for the performance of subsequent feature
extraction and recognition. While the concept of baseline is
intuitive to the human reader, it lacks a precise mathematical
definition. The simplest approaches for baseline estimation
are based on analyzing the horizontal projection histogram.
However this is unsuitable for handwriting due to the

inherent slant and skew in the text.
To address this, several methods have been proposed for

baseline estimation [1][2][3][4]. These typically work by
first identifying a set of pixels in the text that are near the
location of the baseline, and then fitting a line/curve through
them. In [1], baseline is estimated by first extracting a
polygonally approximated skeleton of the word, identifying
baseline relevant points in the skeleton and then fitting the
baseline based on regression analysis. In [2], the minima
points on the contour of the word is used to first fit an
approximate baseline, which is then refined. In [3], baseline
relevant points are identified based on template matching,
and then a cubic polynomial is fit to get a baseline estimate.
These approaches show encouraging results, but have had
limited application in large scale Arabic handwriting recog-
nition, with complications such as cursive writing and the
presence of dots, strokes and other diacritic marks. Further,
existing methods have been primarily tested on databases
such IFN/ENIT[5] with pre-segmented words. However,
word and character segmentation is in itself challenging.

Traditionally, an unsegmented line of text is first seg-
mented based on distinctive features [6] and then the
characters in each segment are recognized. However in
recent years, hidden Markov model (HMM) based methods
which automatically segment characters during recognition
[7] have become popular due to improved performance.
These approaches rely to a large extent on statistical features
like percentiles [8], which are not normalized for baseline
variations. We address this limitation using a novel feature,
called baseline-dependent percentiles.

We describe two approaches to approximate the notional
baseline. Intuitively, the vertical centroid of written text
closely tracks the baseline in Arabic and is parallel to it in
many languages such as English. Based on this, we introduce
a new centroid-based percentile (CPER) feature that corrects
for baseline variations, by normalizing percentile features
with respect to the smoothed centroid track. We compare
this with baselines estimated using max projection profiles
(MPER) and the plain percentile (PER) features. Both CPER
and MPER features show significant improvement over the
percentile features for HMM based recognition on a large
vocabulary, free-form Arabic handwriting corpus [9]. CPER
which models the slant in text produces the biggest gain.

In the rest of the paper, we will first describe the BBN

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.74

329

offline handwriting recognition (OHR) system in section 2,
then describe our baseline estimation techniques in section
3, then present our novel baseline dependent percentile
features in section 4, give an overview of the corpus we
used for testing and our experimental results in section 5,
and conclude in section 6.

II. OVERVIEW OF THE BBN BYBLOS OHR SYSTEM

The BBN Byblos OHR system we use is based on the
work presented in [7]. This system models handwritten text
as the output of HMM-based character models and has three
modules: feature extraction, training and recognition.
Feature Extraction: This is the first step in both training
and recognition. We convert 2-dimensional images to a 1-
d feature sequence by first locating the top and bottom
boundaries of the text lines, and then computing feature
vectors in each line from a sequence of thin, overlapping
vertical windows called frames. In the baseline system,
we extract the following script-independent features from
each frame: Percentiles of intensity values [8], Angle,
Correlation, Energy (PACE) and GSC (Gradient, Structure
and Concavity)[10] features. This set of features is called
PACE+GSC and is described in detail in [8]. In our current
system, we replaced the percentile features with features that
correct for baseline variations.
Training: We model each character using a 14-state, left-
to-right HMM, whose states model the output probability
distributions over the features as a Gaussian mixture. We use
context-dependent HMMs [11] to capture the fact that cur-
sive characters’ appearances depend on their neighbors. In
total, we trained 339K Gaussians for 176 unique characters,
which included Arabic characters, numerals, punctuations
and English characters)
Recognition: The BBN Byblos recognition engine performs
a two-pass search using glyph HMMs and a language model.
We use a trigram language model trained on 90 million
words of Arabic newswire data, with a 92,000 word lexicon
and a test set out-of-vocabulary rate of 4.2%. We use a fast
match beam search for the forward pass, using the HMMs
and an approximate bi-gram language model. This outputs
the most likely word-ends per frame. During the backward
pass, we restrict the search space using the set of choices
from the forward pass and an approximate trigram language
model to produce an N-best list of hypotheses.

III. BASELINE ESTIMATION

The features in the system described so far are computed
without taking into account significant baseline variations
that are common in handwritten text. Hence, the feature
computation is sensitive to style variations across different
authors and can introduce significant errors. Further, baseline
variations are seen not only across writers, but also among
words and characters written by the same writer in a single
line. However, computing the baseline to correct for such

variations is hard, since character segmentations are not
available during feature computation. Also, the notion of
baseline in handwritten text is imprecise and cannot be
defined mathematically.

Existing techniques for baseline estimation [1][2][3][4]
can be thought of in terms of two distinct stages - iden-
tification of baseline relevant pixels in text, and curve-fitting
through the identified pixels. A key challenge here is that
the first stage relies on heuristic techniques, which make
the approaches sensitive to parameter settings and difficult
to generalize for large datasets. We address this by first
segmenting the line into a set of components and then
estimating the baseline for each component. This allows us
to correct for baseline variations within a line robustly. We
will discuss our approach next.

A. Line Segmentation

This involves segmenting a line image into a set of com-
ponents, where we can ignore the intra-component baseline
variations. Given that we do not have character segmenta-
tions apriori, identifying such components is challenging.
The simplest approach is to treat the entire line as a single
component, and estimate a baseline over the line image. This
would allow us to correct for line-level slant that is seen in
many writers.

However, the baseline estimated from this simple ap-
proach is imprecise and does not account for inter-word and
inter-character variations. To address this, we first detect
connected components in the line of text and estimate
a baseline for each component. This allows fine grained
analysis of the baseline, but has one key limitation - the dots
and other diacritic marks are typically in separate connected
components and can confuse the baseline computation. To
address this we eliminated any connected component c1 if
there existed another component c2 such that:

c1.l ≥ c2.l ∧ c1.r ≤ c2.r ∧ c1.pts ≤ c2.pts (1)

where, c.l, c.r are the locations of the left and right horizon-
tal extremes and c.pts is the number of points in connected
component c. Thus, we in effect eliminate those components
c1 whose horizontal extent is completely contained in the
horizontal extent of another component c2. Intuitively, such
components c1 correspond to dots and diacritics.

However, it is possible that components corresponding to
such marks can extend beyond the horizontal extent of the
corresponding character’s component. Further, components
from different words/PAWs can also overlap horizontally
and having multiple baselines at a given x location can
complicate downstream feature extraction. We could address
this by merging components (c1,c2) whose horizontal extents
overlap or are nearby:

min(c1.r, c2.r)−max(c1.l, c2.l) + 1
max(width(c1), width(c2))

≥ OTh

330

where width(c)=c.r-c.l+1 is the horizontal width of com-
ponent c. Positive values for OTh ensure merging of only
those components that overlap horizontally, while negative
values merge even nearby components. However, merging
such components can result in coarser baseline estimates as
the individual components in the larger component can have
different baselines. Figure 1 illustrates this.

Figure 1. A: Extracted Connected Components B:Eliminate dot-like
components using eq. 1 C: Merge neighboring components using eq. 2,
with OTh=-1

B. Baseline Computation

We considered two possible methods for estimating the
notional baseline after segmenting the line into constituent
components.
Max Projection: In this method, we first traverse each
component c vertically and count the number of text pixels
at each vertical location y:

profilec(y) =
c.r∑

x=c.l

fc(x, y) ∀y ∈ [c.t, c.b] (2)

where fc(x, y)=1 if there is text at pixel (x, y) belonging to
component c and 0 otherwise. c.t and c.b are the top and
bottom y locations of the component c respectively. Given
these projection profiles, the baseline for component c is
given by the line:

ybaseline(c) = max
y

{profilec(y)} ∀x ∈ [c.l, c.r] (3)

The max-projection approach is simple, but has been ef-
fective in several applications including line finding [12].
However, it produces a horizontal line to estimate the
baseline and hence is not robust to slant in handwriting.
Smoothed Centroid Line Estimation: Here, we traverse
each component c horizontally and compute the vertical
centroid of the text pixels at each x location:

yc
centroid(x) =

∑
y yfc(x, y)∑
y fc(x, y)

∀x ∈ [c.l, c.r] (4)

After computing the vertical centroids, we estimate the
baseline to be the least squares fit over (x,yc

centroid(x)):

arg max
m,c

c.r∑
x=c.l

||yc
centroid(x)− (mx + c)||2 (5)

This allows us to compute the slant in each connected
component. Figure 2 illustrates the baselines estimated by
different approaches. Triangles, crosses, and boxes denote
maxprojection, centroid-based, and human annotation, re-
spectively.

Figure 2. A: Baseline estimation with components from (A) dot elimina-
tion using (1), (B) merging with (2) OTh = −1

C. Accuracy of Estimated Baseline
Since the baseline is an imprecisely defined concept,

we evaluated the accuracy of our baseline estimation by
comparing them to human annotations. We collected a set
of 200 lines of handwritten Arabic text, and annotated them
using Arabic speakers. The annotators were asked to take
into account baseline variations across words and parts of
Arabic words, but no other specific instructions were given.

Table I compares max projection and centroid line based

Method Dot filtered Merged Components Line
(equation 1) (equation 2) OTh=

-0.2 -0.5 -1.0
Max Projection 12±11 13±13 18±22 20±23 20±24
Centroid Line 8±4 9±6 12±16 12±17 12±18

Table I
BASELINE ESTIMATION ERROR(%). MORE NEGATIVE VALUES FOR

OTh IMPLIES MORE AGGRESSIVE MERGING OF CONNECTED
COMPONENTS. IN PRACTICE OTh≤-2.0 MERGES ALL COMPONENTS IN

A LINE

baseline estimation, when the text lines were segmented by
merging contained connected components (1), neighboring
components (2) and by considering the entire line as a
single component. The entries in the table correspond to
the mean and variance of the relative pixel distances of
the computed baseline w.r.t the annotations, on images with
character height ≈250 pixels.

Our study suggests that all the baseline estimation tech-
niques we considered produce baselines which are offset
by only ≈10-20% on average, from the annotated ground
truth. Further, to correct feature computation we are mainly
interested obtaining curves that are at a constant offset from
the ground truth. Hence the variance is a more important
measure. On both measures, the centroid line approach
performs better. Also, the dot-filtered component extraction
in the first column produces the best results. The same
combination also produces the best performance in our
recognition experiments in section 5.

331

IV. BASELINE DEPENDENT PERCENTILE FEATURES

After estimating the baseline, we incorporate into the
computation of percentile features. These features are com-
puted by integrating the number of text pixels from top
to bottom, from a sequence of overlapping windows called
frames, for each line of text [8]. Since there is significant
variation in the slant and also whitespace above and below
the line of text, we must first tighten the upper and lower
boundaries of each frame. We do this by expanding the width
of the frame wf on both the left and right sides so that
wt.width=5wf .width, and the upper and lower boundaries
of the frame is defined by the bounding box of the text pixels
in wt. This is explained in detail in [9].

Once we tighten the frame, we compute the baseline-
dependent percentile features as follows:

1. At each frame, we find the largest component that
overlaps with the frame.

2. Next, we find the point on the computed baseline line,
at the center of the frame.

3. Then, we divide the frame into two parts, those above
the center point and those below.

4. Finally, we compute percentiles in each of the two parts,
starting from the center line and concatenate the feature
vectors.

Figure 3. Computing baseline-dependent percentile features

This is illustrated in Figure 3. Thus, we are in effect com-
puting two sets of percentiles for each frame: for text pixels
above and below the estimated baseline. The percentiles
integrate ”Blackness”, from the baseline to the top or bottom
of the tightened frame. Thus, in figure 3, 50% of the
blackness is in the first 10% of the upper window, while 50%
of the blackness is in the first 45% of the lower window.

V. EXPERIMENTAL RESULTS

Corpus Description: We use handwritten data collected
by the Linguistic Data Consortium, in our experiments to
test our features. The data consists of scanned images of

handwritten Arabic text, from different scribes, with varied
writing conditions. The ground truth annotations included
word bounding boxes and the corresponding tokenized tran-
scriptions. The details of our training, development (dev),
and test sets are shown in Table II. There is no overlap
of documents between these sets. Also, our development
and test sets contained an equal number of documents from
scribes previously seen and unseen during training. Our
corpus, to the best of our knowledge, is largest collection
of free-flowing Arabic handwritten documents with annota-
tions. The data exhibits several characteristics that make text
recognition hard, such as overlapping line/word boundaries,
non-linear baseline within lines/words, slant, scratches and
poor legibility.

Set #Images #Scribes #Words
Train 9714 71 1389K
Dev 150 50 15K
Test 150 42 15K

Table II
DESCRIPTION OF TRAIN, DEV AND TEST SETS

Performance Comparison: For our experiments, we first
trained a baseline PACE+GSC system using the features and
setup we described in section 2. Then we replaced the per-
centile features in this system with our baseline-dependent
percentile features computed using max projection and
smoothed centroid line on connected components merged
as in equation (1) - we call these the MPACE+GSC and
CPACE+GSC systems respectively and repeated the training
experiment. Then we tested PACE+GSC, MPACE+GSC and
CPACE+GSC systems on the test data. Table III summarizes
the word error rate of the systems. Our results show that our
features which correct for baseline and slant variations pro-
duce significant improvements in WER over the PACE+GSC
system.

Technique Overall Writers in Writers not
Training in Training

PACE+GSC 32.6 31.1 34.1
MPACE+GSC 32.1 30.8 33.5
CPACE+GSC 31.6 30.1 33.2

Table III
SUMMARY OF RESULTS

Comparison of Component Extraction Methods: We also
compared the relative performance of different component
extraction methods, including those which merge fully con-
tained connected components (1), and those which treat the
entire text line as a single component. Table IV shows the
performance of these approaches. The relative performance
closely tracks the accuracy of baseline estimation in Table
I, with the approach that estimates the baseline at the line

332

No baseline Dot filtered Line
(PACE+GSC) (equation 1)

32.6 31.6 32.4

Table IV
COMPARISON OF DIFFERENT COMPONENT EXTRACTION METHODS FOR

CPACE+GSC

level producing a minimal gain over PACE+GSC.
Significance Test and Robustness of Gains: Using the
matched pair comparison test [13], we found the gains of
CPACE+GSC over PACE+GSCE to be significant with a
p-value<0.001, which is well below the traditional thresh-
old of 0.05. We repeated our experiments over a range
of windows for tightening each frame’s upper and lower
boundaries in figure 3, according to the approach described
in [9]. Increasing the window for frame tightening improved
the performance of both systems, but the CPER features
consistently produced a 0.7%-1% gain in all cases. We
repeated our experiments using the page style adaptation
technique presented in [14] and got similar improvements
in WER.

Figure 4, presents examples of handwritten lines where
the CPACE system performed at least 60% better in WER
than the PACE system. These documents typically contain
significant skew and vertical drift of the baseline.

Figure 4. Examples where CPACE improvement is > 60% WER

VI. CONCLUSION

We have presented a feature that helps correct for slant
and baseline variations in handwritten text, which helps in
eliminating the effects of noise and local stroke curvature.
The estimated baselines approximate the track of the writer’s
baseline, within ≈8% of the image height. Normalizing
our features with respect to this track consistently produces
a statistically significant ≈1% absolute improvement in
recognition accuracy.

Acknowledgement: This paper is based upon work sup-
ported by the DARPA MADCAT Program. The views ex-
pressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the US
Government.

REFERENCES

[1] M. Pechwitz and V. Märgner, “Baseline estimation for arabic
handwritten words,” in IWFHR, 2002, pp. 479–.

[2] F. Farooq, V. Govindaraju, and M. Perrone, “Pre-processing
methods for handwritten arabic documents,” in ICDAR, 2005,
pp. 267–271.

[3] M. Ziaratban and K. Faez, “A novel two-stage algorithm
for baseline estimation and correction in farsi and arabic
handwritten text line,” in ICPR, 2008, pp. 1–5.

[4] H. Boukerma and N. Farah, “A novel arabic baseline estima-
tion algorithm based on sub-words treatment,” ICFHR, vol. 0,
pp. 335–338, 2010.

[5] M. Pechwitz, S. S. Maddouri, V. Margner, N. Ellouze, and
H. Amiri, “Ifn/enit-database of handwritten arabic words,”
in 7th Colloque International Francophone sur l’Ecrit et le
Document, Hammamet, Tunis, 2002.

[6] G. Kim and V. Govindaraju, “A lexicon driven approach
to handwritten word recognition for real-time applications,”
vol. 19, no. 4, pp. 366–379, 1997.

[7] P. Natarajan, S. Saleem, R. Prasad, E. MacRostie, and K. Sub-
ramanian, “Multilingual offline handwriting recognition us-
ing hidden markov models: A script-independent approach,”
Springer Book Chapter on Arabic and Chinese Handwriting
Recognition, vol. 4768, pp. 231–250, 2008.

[8] P. Natarajan, Z. Lu, R. M. Schwartz, I. Bazzi, and J. Makhoul,
“Multilingual machine printed ocr,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 15, no. 1,
pp. 43–63, 2001.

[9] S. Saleem, H. Cao, K. Subramanian, M. Kamali, R. Prasad,
and P. Natarajan, “Improvements in bbn’s hmm-based offline
arabic handwriting recognition system,” in ICDAR, 2009, pp.
773–777.

[10] S. Tulyakov and V. Govindaraju, “Probabilistic model for seg-
mentation based word recognition with lexicon,” in ICDAR,
2001, pp. 164–167.

[11] R. Prasad, S. Saleem, M. Kamali, R. Meermeier, and
P. Natarajan, “Improvements in hidden markov model based
arabic ocr,” in ICPR, 2008.

[12] S. Calabretto and A. Bozzi, “The philological workstation
bambi (better access to manuscripts and browsing of images),”
Journal of Digital Information (JoDI), vol. 1, no. 3, 1998.

[13] D. Pallet, W. Fisher, and J. Fiscus, “Tools for the analysis
of benchmark speech recognition tests,” ICASSP, vol. 1, pp.
97–100, 1990.

[14] H. Cao, R. Prasad, S. Saleem, and P. Natarajan, “Unsuper-
vised hmm adaptation using page style clustering,” in ICDAR,
2009, pp. 1091–1095.

333

