
Composite Script Identification and Orientation Detection for Indian Text Images  

Shamita Ghosh and Bidyut B. Chaudhuri 
Computer Vision and Pattern Recognition Unit 

Indian Statistical Institute, 
Kolkata – 700 108, India 

e-mail: {shamita.ghosh, bbcisical}@gmail.com 
 
 

Abstract— A major preprocessing step in a multi-script OCR 
is to identify the script type of the test document image. The 
published papers on script identification usually assume that 
the test image is in correct i.e. 0° orientation. But by mistake a 
document may be fed to the system in wrong orientation, say at 
an angle of nearly 180  or ±90 . In this method we propose a 
script identification method that works for unknown 
orientation for all 11 official Indian scripts. Here, we first find 
the skew and counter-rotate the document by the skew angle. 
This will lead to correct (0 ) or upside down (180 ) orientation. 
Then script identification is done by a multi-stage tree 
classifier using features invariant to 0 /180  orientation. Next 
we go to find the orientation of the image by a two class 
classifier for each script. Performance of the proposed method 
has been tested on a variety of documents and promising 
results have been obtained. 
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I.  INTRODUCTION 
The problem of determining the script in a document 

image has important applications in sorting and searching of 
images as well as multi-script optical character recognition 
(OCR). In India there are eleven official scripts and this 
paper deals with automatic identification of these scripts.  

Among earlier studies on script identification, Spitz and 
co-workers [1, 2] used the spatial relationship of structural 
features for distinguishing between Han and Latin-based 
scripts. Asian scripts (Japanese, Korean and Chinese) were 
differentiated from the Roman ones by uniform vertical 
distribution of upward concavities. Then optical density is 
employed to distinguish among the Asian scripts. Hochberg 
et al [3] used cluster-based templates for thirteen scripts 
including Devanagari. Tan [4] suggested a method for six 
different scripts using Gabor filter output. For successful 
identification, this method requires image blocks containing 
text of single script in single font. Lee et al [5] attempted 
script identification of text in complex, un-oriented and 
degraded document images. 

Among Indian scripts, Pal and Chaudhuri [6] proposed a 
method for Roman, Devanagari and Bangla based on a 
decision tree for recognizing the script of a line of text. This 
work was extended in [7] to other Indian scripts triplets. 
They used headline and structural properties like distribution 
of ascenders and descenders, position of vertical line in a text 
block, and the number of horizontal runs. Chaudhury and 

Sheth [8] used horizontal projection profile, Gabor transform 
and the aspect ratio of connected components for Roman, 
and three Indian scripts. Also, Pati and Ramakrishnan [9] 
have used Gabor transform and DCT features to separate bi-
script, tri-scripts among eleven Indian scripts. A more 
elaborate review on script identification is given in [10]. 

However, all these studies presume that the document 
images are properly oriented and not skewed. But for quick 
and careless feeding in the scanner, 180  document 
orientation (ie. upside down) may result. For a square shaped 
page, orientation near ±90  is also likely. Lu and Tan [11] 
considered simultaneous orientation detection and script 
identification of Arabic, Chinese, Korean and Roman 
document images using Vertical Component Run (VCR) 
features through centroid of the component. Other studies on 
orientation detection are reported in [12, 16].  

The approach in [11] appeared unsuitable for application 
in our problem, as discussed later. Our approach consists of 
three stages. The first stage contains preprocessing including 
skew correction as well as text line identification (for line-
wise feature computation). The skew correction working on 
±90  skew brings the image ideally into 0  or 180  
orientation. Classification to one of the eleven scripts is done 
in the second stage using (0 /180 ) orientation-invariant 
features. In the third phase, orientation detection and 
correction is done by one of the two class classifiers on the 
resultant script. This approach is more modular than [11]. 

Among rest of the paper, Section 2 briefly describes the 
characteristics of Indian scripts. The preprocessing steps of 
the document are proposed in Section 3. Section 4 considers 
the feature extraction while classification approaches for 
both stages are elaborated in Section 5. The experimental 
results and concluding remarks are presented in Section 6 
and Section 7, respectively. 

II. A GLIMPSE AT INDIAN SCRIPTS 
Eleven scripts namely Bangla, Devanagari, Gujarati, 

Gurmukhi, Kannada, Malayalam, Oriya, Tamil, Telugu, 
Urdu and English are used for official works in Indian 
languages. Typical text lines in these scripts are shown in 
Fig. 1.  

All these scripts excepting Urdu and English are 
descendants of ancient Brahmi which prevailed in India 
certainly around 500 BC. By 500 AD Brahmi branched into 
north and south Indian versions. The northern version 
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culminated in Bangla, Devanagari, Punjabi and Gujarati 
scripts while the southern version resulted in Telugu, Tamil, 
Malayalam and Kannada. Oriya script is a northern version 
with notable influence of the south. These scripts are Alpha-
syllabary in nature, having vowel modifiers and compound 
characters (Gurmukhi and Tamil do not contain compounds).  

Fig 1. Typical Text lines of eleven scripts considered in the approach 

Among the north Indian scripts, a fair amount of shape 
similarity is observed. As shown in Fig. 1, Devanagari and 
Gurmukhi (or Punjabi) having headline and vertical line 
strokes look quite similar. The Gurmukhi alphabet devised 
during 16th century has only 70 symbols. For scripts other 
than Gurmukhi, Tamil and Urdu, total number of shapes to 
be recognized in Indian scripts may vary from 500 to 2000. 

Urdu alphabet, derived from Arabic, have distinct word 
composition rules. Unlike others, it is a highly cursive script. 
Urdu characters may take different shapes depending on 
word-initial, word-medial and word-final position. 

English, belonging to Roman family too has different 
characteristics. For OCR the number of English symbols to 
be recognized is nearly as small as that of Gurmukhi. 

III. PREPROCESSING STAGE 
The documents were initially digitized by a flatbed 

scanner in adequate (200/300/400 dpi) resolution. During 
scanning, various degrees of skew and orientation were 
randomly made to simulate the situation. Both fair and old 
document pages were scanned. 

The digital images captured in gray tone were binarized 
by Otsu or Souvola algorithms depending on the image 
quality. Otsu method was used for freshly printed documents 
of good quality. For older document pages having local 
intensity variations, Sauvola approach has been used. More 
complex documents needed a mixture of global and local 
approach for proper binarization.  

Sometimes binarization takes care of the noise to a good 
extent. The remaining noise is identified if there exist many 
more small-area connected components compared to 
elongated components having larger area (which are 
presumed to be text regions). Then a morphological noise 
removal approach is employed on the text. A guard zone 

around elongated components is used to save small textual 
symbols from removal.  

A. Skew Detection and Correction 
A new realization of Hough transform (HT), where 

instead of parametric space representation of straight line 
equation, a set of Digital Straight Lines (DSL) satisfying 
chord property due to Rosenfeld [17] are employed to 
simulate the HT. Advantage of DSL based HT will be 
described elsewhere. The angle corresponding to the highest 
accumulator value among the DSL Hough bins is chosen as 
the skew of the document. The Image is then rotated in the 
reverse direction to the nearest angle of multiple of 90°. 
Those around +90° or -90° are further rotated by 90° to make 
the text lines horizontal. The resulting image is now oriented 
either at 0° or at 180°. It is then passed to the text line 
detection module.  

B. Individual Text Line Detection 
The text line detection is essentially based on white to 

black transition count in horizontal scan, which will be high 
while scanning through a text line and low when scanning 
between two text lines. If two or more consecutive rows have 
zero transitions, we mark the top and bottom of the sequence 
of rows as primary text line separators. But they may also 
separate small disconnected components of characters e.g. 
diacritic marks but fail to find overlapping or touching lines. 
A few data driven heuristic thresholds are used to take care 
of both over-identification and under-identification, resulting 
in 99.7% accuracy.  

IV. FEATURES EXTRACTION 
Two sets of classifier are used for script identification 

and orientation detection, respectively. Features used for 
them are as follows. 

A. Features for Script Identification 
For script identification, features are chosen to have 

invariance to 0°/180° orientation and having good 
discriminative power.  

1) Reservoir Area Difference Feature (frd) 
This class of features is obtained from the concept of 

water filling in a reservoir [18]. If there is concavity in some 
line drawing, when looking from say top, it can accumulate 
2-D equivalent of water dropped from above. When the 
concavity is filled, there will be a spill-over. The water filled 
area is a measure of the concavity or capacity of the 
reservoir and can be used as a feature value. In size invariant 
pattern classification problem, normalization of this feature 
is needed. For the same stroke-drawing, we can get 
additional feature values by considering reservoirs viewed 
from the bottom, left and right side as well. More generalized 
reservoir morphology can be developed, but for our purpose 
the area-based featuring is sufficient.  

To detect water reservoir area feature, first we find all 
connected components for each text line of the document 
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(a) 
  

(b) 

image. Then we calculate the filled area for each connected 
component for top-viewed reservoir as well as for bottom-
viewed reservoir. The top-viewed and bottom-viewed 
reservoirs for a typical Urdu text line are shown in Fig. 2.    

Fig.2(a)Top-viewed (b)Bottom-viewed reservoir for a typical Urdu text line 

To make the reservoir feature 0°/180° orientation 
independent, we take absolute difference of top and bottom 
reservoir area. The feature is normalized by the sum of areas 
of these reservoirs and represented as. 

frd = | WT – WB| / (WT + WB)   (1) 

where WT and WB are the average per-line area in top 
viewed and bottom-viewed reservoirs, respectively. The 
normalization converts the feature value into pure number, 
insensitive to scaling of the image.  

2) White Hole area feature (fwh) 
Another feature for script identification which is also 

invariant to 0 /180  orientation is white hole area. In Fig. 3 
we show this hole area in gray shade. To make this feature 
size insensitive also, we normalized this total white hole area 
by dividing total area of text line boundary boxes of the 
image. According to our computation on training set, the 
normalized hole area is smallest in Gujarati followed by 
Urdu script. On the other hand, English script has the highest 
normalized hole area, closely followed by Telugu script. 

Fig. 3. Hole area for eleven scripts considered in this experiment 

3) Horizontal white-black transition per component (fthi)  
In this case, at first the individual connected components 

of each text line are identified. Then horizontal scanning is 
conducted on these text lines and the numbers of white-black 
transition are counted on individual connected components. 
Now, we consider six bins for k transitions per component 
where k = 1, 2, 3, 4, 5 and ≥6. Initially, the counters of all 
bins are empty. When a scan line encounters a component in 
a text line, the number of white-black transitions is counted. 
Suppose it is 2. Then the counter in the bin corresponding to 
k = 2 will be incremented by one. In this way, the counters 
are incremented for all horizontal scans on the document. Let 
the counter values on training data for k =1, 2, 3, 4, 5 and ≥6 
be n1, n2, n3, n4, n5 and n6, respectively. Then we get six 
normalized white-black transition feature set given by 

fthi = ni / ni ; i = 1..6    (2) 

The members of the feature set show relative abundance 
of transitions per connected component in the image. For 
training samples of English, typical value of fth1 and fth2 are 
about 0.5 and 0.4, respectively but in case of Malayalam 
script fth1 and fth2 are 0.4 and 0.2, respectively. 

4) Vertical white-black transition features (ftvi) 
 Here we consider scanning the text lines of the image in 

a vertical direction and count the number of white to black 
transitions. These vertical black-white transitions are 
accumulated in six bins corresponding to total number of 
columns having one, two, three, four, five and six or more 
transitions. The bins are filled by accumulating the number 
of transitions from text lines of the whole page. Note that 
unlike fthi here we do not use individual connected 
components.  

Let m1, m2, m3, m4, m5 and m6 be the entry in the six 
bins. The components are normalized by the total number of 
transitions to get the feature components. 

ftvi = mi / mi ; i = 1, 2, ....6    (3) 

All these features are 0 /180  orientation invariant. 

B. Feature for Orientation Detection 
For orientation detection in one earlier experiment we 

partitioned the text lines in upper and lower half to compute 
horizontal and vertical crossing counts, border following 
direction (horizontal, vertical, left and right) features etc in 
these two halves. The difference of such values between 
upper and lower half in 0  and 180  orientation were used to 
identify the orientation. 

However, later on we have found that four water 
reservoir based features are enough to identify the orientation 
for all scripts more robustly. They are top, bottom, left and 
right reservoir area of connected components in the text, 
normalized with respect to component boundary box area 
and averaged over all components, called frt, frb, frl and frr, 
respectively.  

Note that for poor documents there may be cuts in the 
text strokes where reservoir principle may not work. This is 
because water will leak through the hole and the reservoir 
can never be filled. In order to take care of this instead of 
water we consider using rectangular pebbles having say R 
pixel sidelength for plugging the hole. 

V. CLASSIFICATION STRATEGY 

A. Script identification  
A tree classifier has been used for script identification. 

The tree classifier is constructed as follows. Initially we tried 
to classify all eleven scripts by a single classifier and 
analyzed the result. We noted that Bangla, Devanagari and 
Gurmkhi scripts confuse with one another. Similarly, 
English, Malayalam and Tamil were confused. Kannada and 
Telugu also misclassified into each other. So, we pooled 
them into three groups. These three groups as well as 
Gujarati, Oriya and Urdu created first layer of the 
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classification tree. Thus in Fig. 4 the classifier C1 partitioned 
the document into six groups. By looking at the output of C1 
the second layers of the tree is formed, so that optimum 
classification accuracy is obtained. Thus, at the second level, 
the classifier C2 separates Bangla from Devanagari and 
Gurmukhi, the classifier C3 separates English, Malayalam 
and Tamil and another classifier C4 distinguishes Kannada 
from Telugu. Finally, the third level classifier C5 makes 
single-class decision between Devanagari and Gurmukhi. 

 

Fig. 4. Classification tree for script identification 

Separate sets of features are employed for classifiers at 
different levels. They have been chosen on the basis of 
system performance on training data. At the first level, i.e. 
classifier C1, the features are reservoir area difference (frd), 
hole area (fwh) and six components of vertical white-black 
transitions ftvi; i = 1,..6. Then in the second level, features for 
classifier C2 are only ftvi; i = 1,..6. For classifier C3 the 
features are fwh and ftvi; i = 1,..6 and for classifier C4 we use 
ftvi; i = 1,..6. Finally, features for C5 are only horizontal 
white-black transitions fthi; i = 1,..6. 

We compared the performance of three types of 
classifiers over the tree structure. They are minimum 
distance classifier, K-nearest neighbor (K-NN) classifier and 
Support Vector Machine (SVM) classifier [19]. The simplest 
is minimum distance classifier which is based on single 
representative feature vector per class. This vector is the 
average over feature vectors of all training samples for the 
class. For a given test pattern, its distance is computed from 
representative vector of all classes. The pattern is assigned to 
the class for which the distance is minimum.  

The K-NN works on the basis of some good 
representative data in the feature space of each class. For a 
new test pattern, its K-nearest neighbors among these 
representatives are identified. The test pattern is assigned to 
the class from which majority of these representatives come. 

More sophisticated approach is the Support Vector 
Machine (SVM), which is based on machine learning from 
support vectors derived from the training samples. It is a 
powerful technique that was originally proposed for two- 
class problem. The technique aims at generating a multi-
dimensional hyperplane which maximizes the margin 
between two classes. The hyperplane is characterized by the 
normal vector expressed as linear combination of the 
neighboring examples of the two classes, called Support 
Vectors. For the generation of hyperplane, sometimes 
mapping to a higher dimensional space has to be done by 

using a Kernel function. Three types of kernel namely linear, 
polynomial and RBF kernels are commonly used.  

These three types of classifiers are tested on the data and 
comparative results are presented in Section 6. 

B. Orientation detection 
For each script, a two-class classifiers is used for 

orientation detection. We tested with the three types of 
classifiers stated above. The four normalized water reservoir 
based features frt, frb, frl and frr are used in the classifiers for 
all scripts. Since SVM classifier performed uniformly better, 
results obtained by SVM is only presented in Section 6. 

VI. EXPERIMENTAL RESULTS 
We tested three different value of K for K-NN classifier. 

Also our SVM classifiers were run with Linear, Polynomial, 
and RBF kernels using OpenCV library. For each script, 
randomly chosen 30 document images are used for training 
and 250 images are considered for testing the accuracy of the 
approach proposed in this paper. For our experiment we 
considered only document containing single column text. 
More complex layout images is not considered in our 
experiments. Each document image contains 15-40 text lines 
with approximate 1-15 words per line and texts are printed in 
different fonts and style at 200/300/400 dpi. We observed 
that best result is obtained by SVM classifiers with RBF 
kernel for all but Malayalam script. For Malayalam, we 
obtained better result with SVM using Polynomial kernel. 
The result details are given in Table I. 

TABLE I.  SCRIPT IDENTIFICATION ACCURACY IN PERCENT 

Script 
Classifier 

Min. 
Dist. 

K-NN SVM 
K=7 K=9 K=11 Linear Poly RBF 

Bangla 97.32 97.76 98.32 98.89 98.32 98.88 99.44
Devanagari 97.42 96.48 97.26 97.66 98.49 98.49 98.49
English 98.12 99.06 99.53 99.53 97.61 98.10 99.53
Gujarati 100.0 99.50 99.50 99.50 99.50 99.50 100.0
Gurmukhi 91.52 92.10 92.16 92.57 94.16 97.40 98.70
Kannada 90.20 90.55 91.35 92.51 98.99 98.99 99.33
Malayalam 97.83 98.33 98.50 98.50 99.01 100.0 99.50
Oriya 89.72 94.68 96.62 97.10 94.95 99.08 100.0
Tamil 91.20 91.04 92.59 93.21 97.99 98.04 98.37
Telugu 85.83 86.60 89.72 90.44 98.45 95.74 99.22
Urdu 100.00 100.00 100.00 100.00 100.00 100.00 100.00

For orientation detection, we obtained 100% accuracy on 
full page text for all considered scripts. So, we have studied 
the sensitivity and robustness of our method on regions 
smaller than a page. The minimum size considered was one 
line of text. The experiment was conducted on three hundred 
instances and the average result was taken for each script. 
The results are shown in Table II. Here once a script has 
attained 100% accuracy we did not go for more number of 
lines, since the results will obviously be 100%. 

297



From Table II it is noted that the proposed approach 
works excellent for Bangla, Oriya, Urdu and reasonably well 
for Devanagari, Gurmukhi, Malayalam and Telugu. The 
others need more data (between 7-9 lines). This is with 
respect to the water reservoir based features. We are trying to 
find an approach where less data is needed for both script 
type and orientation detection. 

TABLE II.  ORIENTATION DETECTION ACCURACY IN PERCENT 

VII. CONCLUSION 
A simple approach has been proposed for simultaneous 

script and orientation detection of all official Indian script 
document images. The basic idea here is to find a set of 
features which are invariant to 0°/180° orientation and yet 
powerful enough to discriminate the scripts. Once the script 
is identified, a proper feature set may be used to drive 
orientation detection classifiers for all individual scripts. 

As stated, Lu and Tan [11] also considered simultaneous 
text categorization and orientation detection. However, this 
method did not work well for our purpose. One reason is that 
characters in Bangla, Devanagari, Gurmukhi and Urdu words 
are connected. So, we get less evidence through a centroid 
VCR of such connected components. Also, three-zone 
division cannot be robust for Urdu. The upper and lower 
zone in other scripts are also scaresly populated, often not 
giving discriminating evidence about orientation. Finally, 
Devanagari and Gurmukhi and Bangla have extremely 
similar overall shape vis a vis VCR features. These factors 
prompted us to devise different classification strategy 
described here. We believe that our approach will be 
effective for other scripts like Arabic, Farsi and Kashmiri 
(having identical structure as Urdu), as well as Tibetan, 
Sinhala and some south Asian scripts, that are identical to the 
Indian scripts. 

The water reservoir feature has shown good potential in 
this problem. As stated before, small leakage in reservoir due 
to cut in stroke lines can be plugged by a 2D pebble. More 
involved incremental and embedded features can be 
developed using the reservoir concept. These and other 
mathematical expositions on reservoir morphology will be 
presented in a more theoretically oriented paper.  
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