
Composite Script Identification and Orientation Detection for Indian Text Images

Shamita Ghosh and Bidyut B. Chaudhuri
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute,
Kolkata – 700 108, India

e-mail: {shamita.ghosh, bbcisical}@gmail.com

Abstract— A major preprocessing step in a multi-script OCR
is to identify the script type of the test document image. The
published papers on script identification usually assume that
the test image is in correct i.e. 0° orientation. But by mistake a
document may be fed to the system in wrong orientation, say at
an angle of nearly 180 or ±90 . In this method we propose a
script identification method that works for unknown
orientation for all 11 official Indian scripts. Here, we first find
the skew and counter-rotate the document by the skew angle.
This will lead to correct (0) or upside down (180) orientation.
Then script identification is done by a multi-stage tree
classifier using features invariant to 0 /180 orientation. Next
we go to find the orientation of the image by a two class
classifier for each script. Performance of the proposed method
has been tested on a variety of documents and promising
results have been obtained.

Keywords- Script type identification; Indian document
processing; Reservoir principle; Orientation detection;

I. INTRODUCTION
The problem of determining the script in a document

image has important applications in sorting and searching of
images as well as multi-script optical character recognition
(OCR). In India there are eleven official scripts and this
paper deals with automatic identification of these scripts.

Among earlier studies on script identification, Spitz and
co-workers [1, 2] used the spatial relationship of structural
features for distinguishing between Han and Latin-based
scripts. Asian scripts (Japanese, Korean and Chinese) were
differentiated from the Roman ones by uniform vertical
distribution of upward concavities. Then optical density is
employed to distinguish among the Asian scripts. Hochberg
et al [3] used cluster-based templates for thirteen scripts
including Devanagari. Tan [4] suggested a method for six
different scripts using Gabor filter output. For successful
identification, this method requires image blocks containing
text of single script in single font. Lee et al [5] attempted
script identification of text in complex, un-oriented and
degraded document images.

Among Indian scripts, Pal and Chaudhuri [6] proposed a
method for Roman, Devanagari and Bangla based on a
decision tree for recognizing the script of a line of text. This
work was extended in [7] to other Indian scripts triplets.
They used headline and structural properties like distribution
of ascenders and descenders, position of vertical line in a text
block, and the number of horizontal runs. Chaudhury and

Sheth [8] used horizontal projection profile, Gabor transform
and the aspect ratio of connected components for Roman,
and three Indian scripts. Also, Pati and Ramakrishnan [9]
have used Gabor transform and DCT features to separate bi-
script, tri-scripts among eleven Indian scripts. A more
elaborate review on script identification is given in [10].

However, all these studies presume that the document
images are properly oriented and not skewed. But for quick
and careless feeding in the scanner, 180 document
orientation (ie. upside down) may result. For a square shaped
page, orientation near ±90 is also likely. Lu and Tan [11]
considered simultaneous orientation detection and script
identification of Arabic, Chinese, Korean and Roman
document images using Vertical Component Run (VCR)
features through centroid of the component. Other studies on
orientation detection are reported in [12, 16].

The approach in [11] appeared unsuitable for application
in our problem, as discussed later. Our approach consists of
three stages. The first stage contains preprocessing including
skew correction as well as text line identification (for line-
wise feature computation). The skew correction working on
±90 skew brings the image ideally into 0 or 180
orientation. Classification to one of the eleven scripts is done
in the second stage using (0 /180) orientation-invariant
features. In the third phase, orientation detection and
correction is done by one of the two class classifiers on the
resultant script. This approach is more modular than [11].

Among rest of the paper, Section 2 briefly describes the
characteristics of Indian scripts. The preprocessing steps of
the document are proposed in Section 3. Section 4 considers
the feature extraction while classification approaches for
both stages are elaborated in Section 5. The experimental
results and concluding remarks are presented in Section 6
and Section 7, respectively.

II. A GLIMPSE AT INDIAN SCRIPTS
Eleven scripts namely Bangla, Devanagari, Gujarati,

Gurmukhi, Kannada, Malayalam, Oriya, Tamil, Telugu,
Urdu and English are used for official works in Indian
languages. Typical text lines in these scripts are shown in
Fig. 1.

All these scripts excepting Urdu and English are
descendants of ancient Brahmi which prevailed in India
certainly around 500 BC. By 500 AD Brahmi branched into
north and south Indian versions. The northern version

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.67

294

culminated in Bangla, Devanagari, Punjabi and Gujarati
scripts while the southern version resulted in Telugu, Tamil,
Malayalam and Kannada. Oriya script is a northern version
with notable influence of the south. These scripts are Alpha-
syllabary in nature, having vowel modifiers and compound
characters (Gurmukhi and Tamil do not contain compounds).

Fig 1. Typical Text lines of eleven scripts considered in the approach

Among the north Indian scripts, a fair amount of shape
similarity is observed. As shown in Fig. 1, Devanagari and
Gurmukhi (or Punjabi) having headline and vertical line
strokes look quite similar. The Gurmukhi alphabet devised
during 16th century has only 70 symbols. For scripts other
than Gurmukhi, Tamil and Urdu, total number of shapes to
be recognized in Indian scripts may vary from 500 to 2000.

Urdu alphabet, derived from Arabic, have distinct word
composition rules. Unlike others, it is a highly cursive script.
Urdu characters may take different shapes depending on
word-initial, word-medial and word-final position.

English, belonging to Roman family too has different
characteristics. For OCR the number of English symbols to
be recognized is nearly as small as that of Gurmukhi.

III. PREPROCESSING STAGE
The documents were initially digitized by a flatbed

scanner in adequate (200/300/400 dpi) resolution. During
scanning, various degrees of skew and orientation were
randomly made to simulate the situation. Both fair and old
document pages were scanned.

The digital images captured in gray tone were binarized
by Otsu or Souvola algorithms depending on the image
quality. Otsu method was used for freshly printed documents
of good quality. For older document pages having local
intensity variations, Sauvola approach has been used. More
complex documents needed a mixture of global and local
approach for proper binarization.

Sometimes binarization takes care of the noise to a good
extent. The remaining noise is identified if there exist many
more small-area connected components compared to
elongated components having larger area (which are
presumed to be text regions). Then a morphological noise
removal approach is employed on the text. A guard zone

around elongated components is used to save small textual
symbols from removal.

A. Skew Detection and Correction
A new realization of Hough transform (HT), where

instead of parametric space representation of straight line
equation, a set of Digital Straight Lines (DSL) satisfying
chord property due to Rosenfeld [17] are employed to
simulate the HT. Advantage of DSL based HT will be
described elsewhere. The angle corresponding to the highest
accumulator value among the DSL Hough bins is chosen as
the skew of the document. The Image is then rotated in the
reverse direction to the nearest angle of multiple of 90°.
Those around +90° or -90° are further rotated by 90° to make
the text lines horizontal. The resulting image is now oriented
either at 0° or at 180°. It is then passed to the text line
detection module.

B. Individual Text Line Detection
The text line detection is essentially based on white to

black transition count in horizontal scan, which will be high
while scanning through a text line and low when scanning
between two text lines. If two or more consecutive rows have
zero transitions, we mark the top and bottom of the sequence
of rows as primary text line separators. But they may also
separate small disconnected components of characters e.g.
diacritic marks but fail to find overlapping or touching lines.
A few data driven heuristic thresholds are used to take care
of both over-identification and under-identification, resulting
in 99.7% accuracy.

IV. FEATURES EXTRACTION
Two sets of classifier are used for script identification

and orientation detection, respectively. Features used for
them are as follows.

A. Features for Script Identification
For script identification, features are chosen to have

invariance to 0°/180° orientation and having good
discriminative power.

1) Reservoir Area Difference Feature (frd)
This class of features is obtained from the concept of

water filling in a reservoir [18]. If there is concavity in some
line drawing, when looking from say top, it can accumulate
2-D equivalent of water dropped from above. When the
concavity is filled, there will be a spill-over. The water filled
area is a measure of the concavity or capacity of the
reservoir and can be used as a feature value. In size invariant
pattern classification problem, normalization of this feature
is needed. For the same stroke-drawing, we can get
additional feature values by considering reservoirs viewed
from the bottom, left and right side as well. More generalized
reservoir morphology can be developed, but for our purpose
the area-based featuring is sufficient.

To detect water reservoir area feature, first we find all
connected components for each text line of the document

295

(a)

(b)

image. Then we calculate the filled area for each connected
component for top-viewed reservoir as well as for bottom-
viewed reservoir. The top-viewed and bottom-viewed
reservoirs for a typical Urdu text line are shown in Fig. 2.

Fig.2(a)Top-viewed (b)Bottom-viewed reservoir for a typical Urdu text line

To make the reservoir feature 0°/180° orientation
independent, we take absolute difference of top and bottom
reservoir area. The feature is normalized by the sum of areas
of these reservoirs and represented as.

frd = | WT – WB| / (WT + WB) (1)

where WT and WB are the average per-line area in top
viewed and bottom-viewed reservoirs, respectively. The
normalization converts the feature value into pure number,
insensitive to scaling of the image.

2) White Hole area feature (fwh)
Another feature for script identification which is also

invariant to 0 /180 orientation is white hole area. In Fig. 3
we show this hole area in gray shade. To make this feature
size insensitive also, we normalized this total white hole area
by dividing total area of text line boundary boxes of the
image. According to our computation on training set, the
normalized hole area is smallest in Gujarati followed by
Urdu script. On the other hand, English script has the highest
normalized hole area, closely followed by Telugu script.

Fig. 3. Hole area for eleven scripts considered in this experiment

3) Horizontal white-black transition per component (fthi)
In this case, at first the individual connected components

of each text line are identified. Then horizontal scanning is
conducted on these text lines and the numbers of white-black
transition are counted on individual connected components.
Now, we consider six bins for k transitions per component
where k = 1, 2, 3, 4, 5 and ≥6. Initially, the counters of all
bins are empty. When a scan line encounters a component in
a text line, the number of white-black transitions is counted.
Suppose it is 2. Then the counter in the bin corresponding to
k = 2 will be incremented by one. In this way, the counters
are incremented for all horizontal scans on the document. Let
the counter values on training data for k =1, 2, 3, 4, 5 and ≥6
be n1, n2, n3, n4, n5 and n6, respectively. Then we get six
normalized white-black transition feature set given by

fthi = ni / ni ; i = 1..6 (2)

The members of the feature set show relative abundance
of transitions per connected component in the image. For
training samples of English, typical value of fth1 and fth2 are
about 0.5 and 0.4, respectively but in case of Malayalam
script fth1 and fth2 are 0.4 and 0.2, respectively.

4) Vertical white-black transition features (ftvi)
 Here we consider scanning the text lines of the image in

a vertical direction and count the number of white to black
transitions. These vertical black-white transitions are
accumulated in six bins corresponding to total number of
columns having one, two, three, four, five and six or more
transitions. The bins are filled by accumulating the number
of transitions from text lines of the whole page. Note that
unlike fthi here we do not use individual connected
components.

Let m1, m2, m3, m4, m5 and m6 be the entry in the six
bins. The components are normalized by the total number of
transitions to get the feature components.

ftvi = mi / mi ; i = 1, 2,6 (3)

All these features are 0 /180 orientation invariant.

B. Feature for Orientation Detection
For orientation detection in one earlier experiment we

partitioned the text lines in upper and lower half to compute
horizontal and vertical crossing counts, border following
direction (horizontal, vertical, left and right) features etc in
these two halves. The difference of such values between
upper and lower half in 0 and 180 orientation were used to
identify the orientation.

However, later on we have found that four water
reservoir based features are enough to identify the orientation
for all scripts more robustly. They are top, bottom, left and
right reservoir area of connected components in the text,
normalized with respect to component boundary box area
and averaged over all components, called frt, frb, frl and frr,
respectively.

Note that for poor documents there may be cuts in the
text strokes where reservoir principle may not work. This is
because water will leak through the hole and the reservoir
can never be filled. In order to take care of this instead of
water we consider using rectangular pebbles having say R
pixel sidelength for plugging the hole.

V. CLASSIFICATION STRATEGY

A. Script identification
A tree classifier has been used for script identification.

The tree classifier is constructed as follows. Initially we tried
to classify all eleven scripts by a single classifier and
analyzed the result. We noted that Bangla, Devanagari and
Gurmkhi scripts confuse with one another. Similarly,
English, Malayalam and Tamil were confused. Kannada and
Telugu also misclassified into each other. So, we pooled
them into three groups. These three groups as well as
Gujarati, Oriya and Urdu created first layer of the

296

classification tree. Thus in Fig. 4 the classifier C1 partitioned
the document into six groups. By looking at the output of C1
the second layers of the tree is formed, so that optimum
classification accuracy is obtained. Thus, at the second level,
the classifier C2 separates Bangla from Devanagari and
Gurmukhi, the classifier C3 separates English, Malayalam
and Tamil and another classifier C4 distinguishes Kannada
from Telugu. Finally, the third level classifier C5 makes
single-class decision between Devanagari and Gurmukhi.

Fig. 4. Classification tree for script identification

Separate sets of features are employed for classifiers at
different levels. They have been chosen on the basis of
system performance on training data. At the first level, i.e.
classifier C1, the features are reservoir area difference (frd),
hole area (fwh) and six components of vertical white-black
transitions ftvi; i = 1,..6. Then in the second level, features for
classifier C2 are only ftvi; i = 1,..6. For classifier C3 the
features are fwh and ftvi; i = 1,..6 and for classifier C4 we use
ftvi; i = 1,..6. Finally, features for C5 are only horizontal
white-black transitions fthi; i = 1,..6.

We compared the performance of three types of
classifiers over the tree structure. They are minimum
distance classifier, K-nearest neighbor (K-NN) classifier and
Support Vector Machine (SVM) classifier [19]. The simplest
is minimum distance classifier which is based on single
representative feature vector per class. This vector is the
average over feature vectors of all training samples for the
class. For a given test pattern, its distance is computed from
representative vector of all classes. The pattern is assigned to
the class for which the distance is minimum.

The K-NN works on the basis of some good
representative data in the feature space of each class. For a
new test pattern, its K-nearest neighbors among these
representatives are identified. The test pattern is assigned to
the class from which majority of these representatives come.

More sophisticated approach is the Support Vector
Machine (SVM), which is based on machine learning from
support vectors derived from the training samples. It is a
powerful technique that was originally proposed for two-
class problem. The technique aims at generating a multi-
dimensional hyperplane which maximizes the margin
between two classes. The hyperplane is characterized by the
normal vector expressed as linear combination of the
neighboring examples of the two classes, called Support
Vectors. For the generation of hyperplane, sometimes
mapping to a higher dimensional space has to be done by

using a Kernel function. Three types of kernel namely linear,
polynomial and RBF kernels are commonly used.

These three types of classifiers are tested on the data and
comparative results are presented in Section 6.

B. Orientation detection
For each script, a two-class classifiers is used for

orientation detection. We tested with the three types of
classifiers stated above. The four normalized water reservoir
based features frt, frb, frl and frr are used in the classifiers for
all scripts. Since SVM classifier performed uniformly better,
results obtained by SVM is only presented in Section 6.

VI. EXPERIMENTAL RESULTS
We tested three different value of K for K-NN classifier.

Also our SVM classifiers were run with Linear, Polynomial,
and RBF kernels using OpenCV library. For each script,
randomly chosen 30 document images are used for training
and 250 images are considered for testing the accuracy of the
approach proposed in this paper. For our experiment we
considered only document containing single column text.
More complex layout images is not considered in our
experiments. Each document image contains 15-40 text lines
with approximate 1-15 words per line and texts are printed in
different fonts and style at 200/300/400 dpi. We observed
that best result is obtained by SVM classifiers with RBF
kernel for all but Malayalam script. For Malayalam, we
obtained better result with SVM using Polynomial kernel.
The result details are given in Table I.

TABLE I. SCRIPT IDENTIFICATION ACCURACY IN PERCENT

Script
Classifier

Min.
Dist.

K-NN SVM
K=7 K=9 K=11 Linear Poly RBF

Bangla 97.32 97.76 98.32 98.89 98.32 98.88 99.44
Devanagari 97.42 96.48 97.26 97.66 98.49 98.49 98.49
English 98.12 99.06 99.53 99.53 97.61 98.10 99.53
Gujarati 100.0 99.50 99.50 99.50 99.50 99.50 100.0
Gurmukhi 91.52 92.10 92.16 92.57 94.16 97.40 98.70
Kannada 90.20 90.55 91.35 92.51 98.99 98.99 99.33
Malayalam 97.83 98.33 98.50 98.50 99.01 100.0 99.50
Oriya 89.72 94.68 96.62 97.10 94.95 99.08 100.0
Tamil 91.20 91.04 92.59 93.21 97.99 98.04 98.37
Telugu 85.83 86.60 89.72 90.44 98.45 95.74 99.22
Urdu 100.00 100.00 100.00 100.00 100.00 100.00 100.00

For orientation detection, we obtained 100% accuracy on
full page text for all considered scripts. So, we have studied
the sensitivity and robustness of our method on regions
smaller than a page. The minimum size considered was one
line of text. The experiment was conducted on three hundred
instances and the average result was taken for each script.
The results are shown in Table II. Here once a script has
attained 100% accuracy we did not go for more number of
lines, since the results will obviously be 100%.

297

From Table II it is noted that the proposed approach
works excellent for Bangla, Oriya, Urdu and reasonably well
for Devanagari, Gurmukhi, Malayalam and Telugu. The
others need more data (between 7-9 lines). This is with
respect to the water reservoir based features. We are trying to
find an approach where less data is needed for both script
type and orientation detection.

TABLE II. ORIENTATION DETECTION ACCURACY IN PERCENT

VII. CONCLUSION
A simple approach has been proposed for simultaneous

script and orientation detection of all official Indian script
document images. The basic idea here is to find a set of
features which are invariant to 0°/180° orientation and yet
powerful enough to discriminate the scripts. Once the script
is identified, a proper feature set may be used to drive
orientation detection classifiers for all individual scripts.

As stated, Lu and Tan [11] also considered simultaneous
text categorization and orientation detection. However, this
method did not work well for our purpose. One reason is that
characters in Bangla, Devanagari, Gurmukhi and Urdu words
are connected. So, we get less evidence through a centroid
VCR of such connected components. Also, three-zone
division cannot be robust for Urdu. The upper and lower
zone in other scripts are also scaresly populated, often not
giving discriminating evidence about orientation. Finally,
Devanagari and Gurmukhi and Bangla have extremely
similar overall shape vis a vis VCR features. These factors
prompted us to devise different classification strategy
described here. We believe that our approach will be
effective for other scripts like Arabic, Farsi and Kashmiri
(having identical structure as Urdu), as well as Tibetan,
Sinhala and some south Asian scripts, that are identical to the
Indian scripts.

The water reservoir feature has shown good potential in
this problem. As stated before, small leakage in reservoir due
to cut in stroke lines can be plugged by a 2D pebble. More
involved incremental and embedded features can be
developed using the reservoir concept. These and other
mathematical expositions on reservoir morphology will be
presented in a more theoretically oriented paper.

ACKNOWLEDGMENT
Partial support by DIT, Govt. of India in the form of a

sponsored project is gratefully acknowledged.

REFERENCES
[1] A. L. Spitz and P. Sibun, “Natural language processing from scanned

document images,” Proc. Applied Natural Language Processing,
Stuttgart, 1994, pp. 115–121.

[2] A. L. Spitz, “Determination of The Script and Language Content of
Document Images” IEEE Transactions on PAMI, vol 19, March
1997, pp. 235-245.

[3] J. Hochberg, P. Kelly, T. Thomas and L. Kerns, “Automatic script
identification from images using clusterbased templates,” IEEE
Trans. Pattern Anal. Machine Intell. vol. 19(2), February 1997, pp.
176–181.

[4] T. N. Tan, “Rotation Invariant Texture Features and Their Use in
Automatic Script Identtification” IEEE Transactions on PAMI, vol.
20, 1998, pp. 751-756.

[5] D. Lee, C. R. Nohl. and H. S. Baird, "Language Identification In
Complex, Unoriented, And Degraded Document Images," Proc.
Second IAPR Workshop on Document Analysis Systems (DAS),
1996, pp. 17-39.

[6] U. Pal, and B. B. Chaudhuri, “Identification of different script lines
from multi-script documents,” J. Image and Vision Computing. Vol.
20, 2002, pp. 945-954.

[7] U. Pal, and B. B. Chaudhuri, “Indian script character recognition: a
survey,” J. Pattern Recognition, vol. 37, 2004, pp. 1887-1899.

[8] S. Chaudhury and R. Sheth, “Trainable script identification strategies
for Indian languages,” Proc. Int. Conf. on Document Analysis and
Recognition, (IEEE Comput. Soc. Press, 1999, pp. 657–660.

[9] P. B. Pati and A. G. Ramkrishnan, “Word Level multi-script
identification,” Pattern Recognition Letters vol. 29, 2008, pp. 1218–
1229.

[10] D. Ghosh, T. Dube and A. P. Shivaprasad, “Script Recognition-A
Review,” IEEE Transactions on PAMI, vol 32(12), 2010, pp 2142-
2161.

[11] S. Lu and C. L. Tan, “Automatic document orientation detection and
categorization through document vectorization,” Proc. of the 14th
annual ACM international conference on Multimedia, 2006, pp. 113-
116.

[12] T. Akiyama, and N. Hagita, “Automated entry system for printed
document,” J. Patteren Recognition, vol. 23(11), 1990, pp. 1141-
1154.

[13] D. S Le, G. R. Thoma and H. Weschler, “Automated page orientation
and skew angle detection for binary document images,” J. Pattern
Recognition, vol. 27(10), Oct. 1994, pp. 1325-1344.

[14] D. Bloomberg, G. Kopec, and L. Dasari, “Measuring document image
skew and orientation,” J. SPIE vol. 2422, 1995, pp. 302-316.

[15] R. S. Caprari, “Algorithm for text page up/down orientation
determination,” J. Pattern Recognition Letters. vol. 21(4), 2000, pp.
311-317.

[16] B. T. Avila, and R. D. Lins, “A fast orientation and skew detection
algorithm for monochromatic document images,” Proc. of the 2005
ACM symposium on Document engineering, 2005, pp. 118-126.

[17] A. Rosenfeld, “Digital straight line segment,” IEEE Trans.
Computers, vol. 23(12), 1974, pp. 1264-1268.

[18] U. Pal, S. Sinha and B. B. Chaudhuri, “Multi-Script Line
identification from Indian Documents,” Proc. Seventh International
Conference on Document Analysis and Recognition (ICDAR) Vol 2,
2003, pp. 880-884.

[19] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol. 2(2),
1998, pp. 955-974.

Script % of Accuracy for minimum document size (in no. of lines)
1 2 3 4 5 6 7 8 9

Bangla 100.00
Oriya 100.00
Urdu 100.00
Devanagari 99.90 100.00
Gurmukhi 99.31 100.00
Malayalam 98.20 99.84 100.00
Telugu 97.75 99.71 100.00
Tamil 88.84 94.07 96.50 98.38 99.33 100.00
Kannada 87.71 93.69 95.51 96.34 97.37 99.25 100.00
English 85.90 89.63 95.83 96.90 97.79 99.53 100.00
Gujarati 73.69 82.95 86.64 89.13 92.11 94.66 97.63 99.27 100.00

298

