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Abstract—In this paper we designed an adaptation module
(AM) with the objective to increase the performance of a
recognition system for a new user or new writing style. The
developed adaptation module is added after the recognition
system, and its role is to examine the output of the independent
system and produce a more correct output vector close to the
desired response of the user. To achieve this end, we conceive
an adaptation module based on Radial Basis Function Neural
Network (RBF-NN) which is built using an incremental training
algorithm. Two adaptation strategies are applied for adaptation
module training: increase the number of new hidden units and
adjust the parameters of the nearest unit (weights and location
of center) using the standard descent gradient. This new
architecture is evaluated by the adaptation of two recognition
systems, one for digit recognition and one for alphanumeric
character recognition. The results, reported according to the
cumulative error, show that the adaptation module (AM) leads
to decreasing the classification error and is capable of fast
adaptation to the users handwriting. Moreover, results are
compared with those carried out using the weights updating
strategy of the nearest center apart from the addition of new
units. In fact, the adaptation module decreases an average of
50% the error rate with standard recognition systems.

Keywords-Writer Adaptation; Module Adaptation; Incre-
mental learning of RBF-NN;

I. INTRODUCTION

Nowadays, the appearance of new apparatuses such as
PDA, Smart-phone,...etc make the communication man ma-
chine convivial and fast. Following these innovations, new
needs emerged to make these apparatuses efficient. Among
these needs, we mention the data acquisition, the treatment
of these data and an on-line recognition system of the
writing. This recognition proves very simple and intuitive but
it is very complex to model. The most powerful solutions of
recognition are based on neural networks, hidden Markov
models, fuzzy inference systems, or combination of these
various approaches [1], [2], [3]. The personal characteristic
of these new apparatuses incited the researchers to generate
a recognition system which adapts to a specific writer
style. Thus, the training of the system is realized with an
independent writer database. During the use of the apparatus,
the system adapts and converges towards a dependent writer
system faster and more effective.

There are two adaptation strategies depending on whether
the adaptation is performed in off-line or on-line. In the case
of off-line, the adaptation is carried out before the real use
of the apparatus. So, the user is asked to write a small base
containing some words or characters which is used to adapt
the system. After that the system won’t be modified. In the
case of on-line, the system is adapted at each time the user
reports a misclassification.

As part of on-line writer adaptation, the systems can be
classified in three groups: systems reorganizing the proto-
types of the database (addition, modification and deletion),
systems updating the recognition systems parameters and
systems incorporating an adaptation module without modi-
fying the recognition systems.

Generally, the prototype based system can be adapted to a
new writing style by reorganizing the standard prototype set
or using also a new dependent user prototype set [4], [5], [6].
The second group includes most recognition systems which
are adapted by modification of their specific parameters.
Among these systems we mention those which are based on
HMM [7], [8], [9]. Generally, the parameters’ HMM were
adapted using the expectation maximization (EM) retraining,
the maximum a posteriori (MAP) adaptation and the max-
imum likelihood linear regression (MLLR) technique. We
also find those which are based on support vector machines
like the system described in [10] where an adaptation was
realized by re-learning the different SVMs using virtual
examples. Add to that, the system in [11] applied an SVM
based multiple kernel learning where support vectors were
adapted to better model the decision boundary of a specific
writer. Also, we mention the system presented in [12], [13]
which used a method based on incremental linear discrim-
inant analysis where the writer adaptation is performed by
updating the LDA transformation matrix and the classifier
prototypes in the discriminative feature space. In the same
way, [14] used an incremental learning of the Modified
Quadratic Discriminant Function (MQDF) classifier.

Finally, there is the group of systems that associate an
adaptation module which is the subject of modification.
We mention the system [15] replacing the last layer of the
Time Delay Neural Network with an Optimal Hyperplane.
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For writer adaptation, the Optimal Hyperplane classifier was
retrained to peculiar writing style. In this same context, we
find [16] where an output adaptation module was added to
the recognition system based on Multi Layer Perceptron.
This module consists of a Radial Basis Function network
(RBF-NN). So, the adaptation was focused on the sequential
learning of the RBF-NN. Our work is based on the latter
system using the adaptation module.

The organization of the paper is as follows. In Section
II, we present the global architecture of the adaptive sys-
tem. Besides we describe the different adaptation strategies
applied by the adaptation module. In Section III, the perfor-
mance of the adaptation module is evaluated by applying it
on two recognition systems.

II. PROPOSED APPROACH

A. Objectives

In order to achieve a writer adaptation that can be applied
to all systems independently of the implemented classifier’s
type, we opt to use a module to adapt a recognition system
(RS). This technique is based on the consistency between
the output of the RS and a specific style of characters being
received, even in the case where the output is incorrect.
Thus, the Adaptation Module (AM) learns to recognize
these consistent incorrect output vectors and produces a
more correct output vector [16]. To exploit this consistency,
the (AM) is added after the RS. The architecture of the
dependent recognition system is presented in Figure

The adaptation module is based on Radial Basis Func-
tion Neural Network (RBF-NN) and will benefit from the
ownership of the network, to which each unit responds to
a local region of input space. The training of the (AM)
requires a sequential learning. Usually, the objective of
training algorithm is to learn the relations between input
and desired output from given training samples. In the writer
adaptation context, the training algorithm is utilized in real
time control with a small writer dependent database, which
make the problem more complex.

The first suggestive incremental learning algorithm of
RBF was that of Platt [17] named RAN (Resource Allocating
Network). Subsequently, improvements were made on this
algorithm and other algorithms were applied.

The objective of RAN is to learn the network easily
and rapidly, leading to a good performance. In fact, this
algorithm has been composed of two actions depending on
how the network performs on a presented pattern. If the
network performs poorly, a new unit was allocated satisfying
some growth criteria. If the network performs well, the
existing network parameters were updated using standard
LMS gradient descent.

The RAN algorithm allows a sequential learning of the
RBF-NN that initially contains no hidden nodes, and can
add hidden units in the RBF-NN to extend the approximation
ability when errors’ classification are reported.

A simplified version of RAN [16] has been used in the
context of writer adaptation. Applied as an output adaptation
module, its basic principle was to map the response of the
writer independent neural network into the correct user-
dependent confidence vector.

B. Writer Adaptation Strategies

The goal of the adaptation Module (AM) is to produce an
output dependent confidence close to the desired response.
In this way, the (AM) adds to the output of the recognition
system (𝑂𝑅𝑆) an adaptation vector (𝐴) to produce a writer
dependent output (𝐴𝑂), with 𝐴𝑂𝑖 = 𝑂𝑅𝑆

𝑖 +𝐴𝑖.
The following are the notations used in the algorithm

presented below: 𝐼: Input Pattern which is the output of
the recognition system, 𝑁 : Number of units in hidden layer,
𝜎: Width of RBF, 𝑧: Output hidden layer, 𝑖: Output layer,
𝑗: Hidden layer, 𝐶: RBF center, 𝑊 : Weight between output
and hidden neurons, 𝐷: Desired output. In our experiments,
the target vector (D) is 1 for the neuron corresponding to
the correct response and 0 for all other neurons. For a given
pattern input (𝐼,𝐷), we calculate the RBF-NN output using
the following equations:

𝑧𝑗 = 𝑒𝑥𝑝(− (
∑

𝑘 𝐶𝑗𝑘 − 𝐼𝑘)
2

𝜎2
𝑗

) (1)

𝐴𝑖 =
∑

𝑗

𝑧𝑗 ×𝑊𝑗𝑖 (2)

The learning algorithm of (AM) is divided into two
phases: the growing and the updating of the RBF-NN.

∙ The growing of the RBF-NN: The RBF network begins
with no hidden neurons. The misclassification reported
by the user initiates new hidden neurons based on a
growing criterion. The latter is the Euclidean distance
between the input and the nearest unit. If this minimum
distance exceeds a threshold (𝛾) then a new hidden unit
will be allocated. In this case:

– The input that is considered far from the existing
units becomes the center of the new unit (𝐶𝑁+1 =
𝐼).

– The weight values of connections between the new
unit and the output layer correspond to the error
realized by the system with a step size 𝑎. These
weights are calculated using 𝑊(𝑁+1)𝑖 = 𝑎(𝐷𝑖 −
𝐴𝑂𝑖).

– To avoid the overlap of different regions of RBF
units, the width of the new unit is fixed to the
distance (𝑑𝑚𝑖𝑛) between the input and the unit
which is the nearest to it (𝜎𝑁+1 = 𝑑𝑚𝑖𝑛).

∙ Updating the Parameters of the Nearest Neuron: In
order to do an adaptation transparent to the user, we
need to decrease the learning speed of the RBF-NN
which is in correlation with the size of the network
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Figure 1: The architecture of the developed system including the writer adaptation module and the different recognition
levels

and the number of units subject of update. For this
reason, we will adjust only the parameters of the nearest
neuron. The update can affect the three parameters of
an RBF unit that are: center, width and weights. So,
this phase is very important and delicate because the
objective is to modify the behavior of the nearest neu-
ron for the current input without causing the forgetting
of what is already learned by this neuron. Based on
this fact, and to bring the entry near to the nearest
unit, we can be limited to the displacement of its center
without modification of its width. After that, we modify
its weights. The researche,s which were made in the
field of sequential learning of RBF-NN, used either
the standard LMS gradient descent or the Extended
Kalman Filter (EKF) algorithm. Therefore, having an
adaptation time and memory size constraints, we opt
for the standard LMS gradient descent to decrease the
error at each time no new unit is allocated. This is done
using the following equations :

Δ𝐶𝑗 = 2
𝛼

𝜎𝑗
(𝐼𝑘 − 𝐶𝑗𝑘)𝑧𝑗 [(�⃗� −𝐴𝑂) ⋅ �⃗�𝑗 ] (3)

Δ�⃗�𝑗 = 𝛼[(�⃗� −𝐴𝑂)]𝑧𝑗 (4)

III. EXPERIMENTS AND RESULTS

To test the performance of the Adaptation Module in
the generation of the writer dependent recognition system,
we connected it in the output of an independent recog-
nition system. The lastter is developed using a generic
toolkit (LipiTk) whose aim is to facilitate development of
on-line handwriting recognition engines [18] available at
http://lipitk.sourceforge.net.

We performed two writer independent recognition systems
for numeral and alphanumeric characters. The IRONOFF
handwriting database was used to train the two recognizers.

Table I: Recognition rate of the alphanumeric system (with-
out adaptation)

Writer Recognition rate Writer Recognition rate
’lo’ 84% ’ta’ 84.8%
’am’ 85.6% ’fa’ 82%
’om’ 84.2% ’im’ 86%
’ka’ 87% ’ch’ 85%
’ri’ 90% ’bo’ 84.2%

This implies that the output size of the (AM) depends on
its input vectors resulting from the independent recognition
system.

The evaluation was conducted using ten dependent
databases that each one was collected by one writer apart
from the training writers. The writers were asked to write
on a tablet at least ten examples for each character class:
digits [0–9] and lowercase letters [a–z]. The examples are
taken randomly to be presented to the (RS) for recognition
and adaptation. The recognition rates using the training
(IRONOFF) and test databases are represented in table I.

To show the effectiveness of the (AM) referring to the
cumulative errors made during the interactive use of the
apparatus, we chose databases of two writers ’lo’ and
’fa’ where their writing caused a great confusion of the
recognition system. Figure 2b points out the results for three
cases : without adaptation, with adaptation (strategy that
updates only weights [16] and adds new centers) and with
adaptation (strategy that justifies center and updates weights
and adds new centers).

We trained the (AM) using the following parameter values
that are similar for the two recognition tests : the step size
𝑎=0.25; the threshold 𝛾=0.2 and the learning rate 𝛼=0.02.

Figure 2 shows the baseline cumulative error without
adaptation. Also the total number of character errors from
the time when the adaptation started is plotted to give
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(a) Adaptation of numeral recognition system

(b) Adaptation of alphanumeric recognition system

Figure 2: The cumulative number of errors with and without
adaptation

the estimate instantaneous error rate. Therefore, we note
that the slopes for both writers, using the numeral or the
alphanumeric recognition system, decrease dramatically by
applying the (AM).

Moreover, this experiment is designed to examine the
effect of different adaptation strategies (Platt [16] strategies
or our strategies) on the recognition performance during the
adaptation progress. Clearly, it is observed from figure 2b
that our writer adaptation method using the weights update
and center adjustment of the nearest unit can significantly
reduce the cumulative character errors for both recognition
systems. Quantitative results are shown in table II where
we display cumulative errors obtained with and without
adaptation module (AM) for both recognition systems and
in the case of writers ’lo’ and ’fa’ test databases.

Furthermore, the performance comparison between adap-
tation strategies is given in table II in which we show the
number of memories stored as well as the number of updates
carried out during test. These results point out that our
adaptation strategies reduce an average 11% the number of
memories compared with the method of Platt.

Taking the two writers as examples, the recognition rate
without and with adaptation together with the error rate
reduction, are presented in table III. Clearly, it is observed
from table III that the adaptation module applying our
adaptation strategies can significantly reduce an average 50%
the error rate for the two independent recognition systems.

Table III: Performance comparison of writer adaptation

Recognition
system

Writer Without
adapta-
tion

Our
adaptation
strategies

Error
rate re-
duction

Elapsed
time

Numeral ’lo’ 72% 88% 57.14% 0.33s
’fa’ 76% 91% 62.5% 0.74s

Alphanumeric ’lo’ 84% 97% 81.25% 1.22s
’fa’ 82% 91% 50% 0.95s

One of the most important properties of a writer adap-
tation is the transparency to the user. For this reason, we
presented in the table III the elapsed time for the adaptation
of the test dependent databases for both writers. We notice
that at the most the elapsed time is 1.22 second to correct
57 errors made by the alphanumeric recognition system in
the case of writer ’lo’. We conclude that the (AM) takes
0.033 second to correct one error. Moreover, the numeral
recognition system take 0.74 second to be adapted to the
’fa’ writing style. So, 0.08 second for one error. This is
due to the increased number of the carried out updates, as
already shown in table II.

For this reason, we have also tried to get the elapsed time
for a parameters update of the nearest unit and an addition
of new unit. Consequently, the obtained results confirm the
rapidity of the (AM), then at the most, the addition takes
0.0078 second and the update 0.08 second.

IV. CONCLUSION

Our main idea, to perform a writer adaptation, is to
conceive an adaptation module (AM) which can be added
after any independent recognition system, and can learn
and recognize the classification errors and produce a vector
confidence close to the desired response mentioned by the
user. The training of the (AM) which is based on the RBF
neural network, is carried out by referring to the Resource
Allocating Network (RAN) algorithm. Our adaptation of the
(AM) consists of two strategies which are the addition of
new units and the updating of nearest unit parameters (center
and weights).

To test the performance of the Adaptation Module in
the generation of the writer dependent recognition system,
we connected it in the output of two recognition systems
(numeral and alphanumeric). The evaluation was conducted
using ten dependent databases. Taking two writers as exam-
ples, we show the result for both systems. Furthermore, we
made a performance comparison of the (AM) based on the
cumulative character errors realized since adaptation started.

The comparison was realized between the (AM) trained
with our adaptation strategies and the adaptation strategies
used by Platt [16]. We notice that the (AM) reduced an
average 11% the number of memories stored during test
compared to the (AM) built using Platt strategies.
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Table II: Performance comparison of strategies on writer adaptation

Numeral recognition system
Writer Word written Word errors Platt strategies Our strategies

during test (without AM) word errors (AM) memories stored
/ number of up-
dates

word errors (AM) memories stored
/ number of up-
dates

’lo’ 100 16 12 10 / 4 3 9 / 2
’fa’ 100 18 10 12 / 5 9 13 / 7

Alphanumeric recognition system
Writer Word written word errors Platt strategies Our strategies

during test (without AM) word errors (AM) memories stored
/ number of up-
dates

word errors (AM) memories stored
/ number of up-
dates

’lo’ 360 100 55 73 / 15 43 65 / 5
’fa’ 360 85 44 62 / 5 31 57 / 5
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