
The SCRIBO Module of the Olena Platform: a Free
Software Framework for Document Image Analysis

Guillaume Lazzara, Roland Levillain, Thierry Géraud, Yann Jacquelet, Julien Marquegnies, Arthur Crépin-Leblond
EPITA Research and Development Laboratory (LRDE)

14-16, rue Voltaire, FR-94276 Le Kremlin-Bicêtre, France
E-mail: firstname.lastname@lrde.epita.fr

Abstract—Electronic documents are being more and more
usable thanks to better and more affordable network, storage and
computational facilities. But in order to benefit from computer-
aided document management, paper documents must be digitized
and analyzed. This task may be challenging at several levels.
Data may be of multiple types thus requiring different adapted
processing chains. The tools to be developed should also take into
account the needs and knowledge of users, ranging from a simple
graphical application to a complete programming framework.
Finally, the data sets to process may be large. In this paper,
we expose a set of features that a Document Image Analysis
framework should provide to handle the previous issues. In par-
ticular, a good strategy to address both flexibility and efficiency
issues is the Generic Programming (GP) paradigm. These ideas
are implemented as an open source module, SCRIBO, built on
top of Olena, a generic and efficient image processing platform.
Our solution features services such as preprocessing filters, text
detection, page segmentation and document reconstruction (as
XML, PDF or HTML documents). This framework, composed of
reusable software components, can be used to create full-fledged
graphical applications, small utilities, or processing chains to be
integrated into third-party projects.

Keywords-Document Image Analysis, Software Design,
Reusability, Generic Programming, Free Software

I. INTRODUCTION

Today’s information tends to be more and more electronic,
stored and processed as digital data using computers and
networks. Digital processing allows users of document-related
software tools to benefit from the properties of computer-
aided document processing: (semi-)automated computations,
efficient processing of (possibly large) data sets, adaptable
and configurable methods, etc. However, there is still a con-
siderable amount of non-digital (paper) documents in use.
One of the challenges of Document Image Analysis (DIA)
is to acquire, process and integrate them just like born-digital
documents.

Digitized data includes many different categories of docu-
ments: books, magazines, newspapers, invoices, maps, camera
pictures and videos, etc. Each kind of document has its
own peculiarities: some of them are only composed of text,
others mix text with images, tables, graphical data; documents
may exhibit a structure (e.g. articles) or not (e.g. maps

This work has been conducted in the context of the SCRIBO project [1] of
the Free Software Thematic Group, part of the “System@tic Paris-Région”
Cluster (France). This project is partially funded by the French Government,
its economic development agencies, and by the Paris-Région institutions.

or pictures); etc. Each of these categories requires specific
processing chains to produce the desired results. Furthermore,
the corresponding applications may have to provide efficient
implementations of these workflows so as to be able to handle
the amount of input data.

The exponential growth of the digital world requires versa-
tile software tools to both acquire and process non-digital data,
in particular in the field of paper documents. Such tools are ex-
pected to handle large data sets (i.e. numerous and/or large dig-
ital images) and address many use cases depending both on the
nature of the data (invoices, articles, etc.) and the operations
to be processed (image enhancing, feature extraction, etc.).
In addition, to meet the complexity of the tasks to perform
and the knowledge of the various users, these tools should
offer different interfaces including Graphical User Interfaces
(GUIs), interactive execution environments, Command Line
Interfaces (CLIs), Application Program Interfaces (APIs) of
software libraries, etc.

DIA tools usually propose one or several workflows starting
from a digitized document (and sometimes featuring this ac-
quisition step), and delivering one or several results (image(s),
structured or unstructured data, etc.). Each workflow consti-
tutes a toolchain that can be reused on similar documents. The
data which needs to be extracted may differ from the use case.
For instance, in automatic document indexing, retrieving only
the text may be sufficient. For Entreprise Content Management
(ECM) and paper archiving, where users should be given the
possibility to operate on the whole initial document, preserving
every element (text, pictures, tables, etc.) as well as their
spatial organization is essential. A DIA framework should
therefore support the creation and use of many toolchains (as
well as variants of these) to match the variety of use cases and
kinds of documents.

In this paper, we try to circumscribe the properties of a
DIA software tool able to handle this variety using a single
extensible framework, as presented in Section II. Section III
proposes an organization of such a framework, its components,
and the featured user interfaces. The ideas expressed in this
paper have been implemented in a DIA framework, which is
a dedicated module of a generic and efficient Free Software
image processing platform, Olena [2]. Section IV presents
the contributions of the SCRIBO module and compares our
approach with similar projects. In addition to the presentation
of our framework, we also show some research results in DIA

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.59

252

produced by our solution in Section V. Section VI summarizes
the goals and status of the project.

II. DESIGNING A MODERN DIA FRAMEWORK

A. Features and Properties

We believe that a reusable DIA framework should feature
two main design features: flexibility and efficiency.

1) Flexibility: To handle the variety of DIA inputs while
addressing as many uses cases as possible, a software frame-
work should be constructed from reusable building blocks.
Each block would provide an elementary operation (binariza-
tion, deskew method, etc.) and processing chains would be set
up by plugging the output of a block to the input of another
block. This idea of building flexible software tools is one of
the design choices of the Gamera project [3].

2) Efficiency: Processing speed may be a major concern in
some use cases, when a DIA toolchain is expected to handle
a large quantity of data per day, for instance in an industrial
context (e.g., analyzing batches of invoices from clients).

Based on our experience, a good strategy to address both
flexibility and efficiency issues is to use the Generic Program-
ming (GP) approach. Generic Programming is a way to design
algorithms and data structures so that they are not tied to a set
of fixed types (e.g. an image with only binary or 8-bit gray-
level data), but applicable on inputs defined by free parameters
(e.g. an image with values of type V). GP is a programming
paradigm resolved at compile-time, which means that it does
not induce run-time penalties per se, and is therefore a good
choice as far as performance is concerned.

In addition to these design traits, the design framework
should also take the following elements into account:

3) Multiple Interfaces: Another facet of the diversity of
DIA use cases is expressed through the diversity of users.
Some of them will need a very simple graphical interface with
little or no configuration to handle a pre-built task; some will
want to easily arrange existing toolchains or building blocks
using an interactive environment or CLI; others may have to
design new building blocks by using the framework’s API to
create new algorithms.

4) Easy to Integrate: DIA is often an element of a larger
IT workflow, for instance ECM, which is concerned with the
storage, management and processing of an organization’s data.

B. A Module over a Library

During the past ten years we have been designing and
implementing a generic and efficient Image Processing (IP)
platform, Olena [2]. Lately we have added a module dedicated
to DIA to Olena, following the ideas listed above. In the re-
mainder of this paper, we present the components, applications
and capabilities of this software tool, designed to be flexible
and efficient.

To address these design constraints, we propose to build
the DIA framework as Free Software based on a generic C++

library. C++ is indeed a widespread, well-known and well-
supported language supporting the GP style. There are several
free and proprietary compilers producing efficient code for

most architectures in use. This approach has already been
chosen by other projects taking an interest in DIA like Qgar [4]
to produce reusable software tools. Alternative strategies to
handling the diversity of documents include generative meth-
ods as demonstrated by the DMOS project, where a grammar
formalism is used to describe relationships between the ele-
ments of a structured document [5].

On top of this C++ library, the framework shall provide
multi-level User Interfaces (UIs) like scripting language inter-
faces (Python, Ruby, Perl, etc.), command line programs (to
be used from a Unix shell), graphical interfaces to set up and
run processing chains and analyze their results. Extensibility
should be preserved: an algorithm or a data structure added to
the generic C++ library should be easily made available to all
UIs.

C. Free Software and Reproducible Research

The whole module has been developed as an open source
software. It is freely available [6], providing a collection of
tools to design DIA applications. It will be offered as separated
packages and some toolchains will be available as standalone
applications.

For the purpose of testing and evaluation, online demon-
strations of the module are also available [7]. One of them
performs the detection of text in pictures; another one handles
the task of document binarization. A third demonstration
generates HTML and PDF documents from an image of
document, producing results such as the ones shown in Fig. 1.

Distributing a package as Free Software has many advan-
tages: it helps to spread the project through the Internet; it
makes integration and extension easier; and in a research
context, it enables reproducible research, i.e., the possibility
to reproduce, study and compare published results [8], [9].

III. FRAMEWORK INSIGHT

This section presents the SCRIBO module and the architec-
ture of the Olena project. The core of Olena is a generic and
efficient C++ IP library called Milena. On top of this general
purpose IP framework, Olena aims at providing components
addressing more specific needs of various application domains.
The SCRIBO module, dedicated to DIA, is the first of these
components. Olena is a Free Software project developed
following open source principles.

A. Generic Image Processing Foundations

We only sketch the Milena library in this section, as this is
not the main topic of this paper. Milena [10] contains generic
data types (including images, points, point sets, values, neigh-
borhoods, structuring elements, weighted windows, functions
and accumulators), and generic IP algorithms. By “generic”,
we mean these elements have a general definition that does
not limit their actual reusability. Hence an algorithm can be
written once and reused with many input types, as long as
their combination is valid.

Milena uses a multi-paradigm approach: its is based on
a programming technique that we have developed, which

253

(a) Original document image.

\»\\` ̀ -1

\\“\§|§' '
camp, and in such surprisingly spacious

beds, that it took them hours to get to

sleep. Where were we, you ask? Why, in

our driveway, of course. The only sen-

sible place to do a dry-or in this case

wet-run of the trailer before really hit-

ting the highway.

About l A.M. l awoke, frozen, and

realized another piece of vital instruc-

tion I hadn’t gotten during the handoff

was how to work the heating system. l

fumbled with a flashlight and the outside

gas tanks and finally figured it out. The THE AGE OF

next morning, however, I learned that I AIRSTREAM

had been too slow: My 2-year-old son, J.F.K. exits a mobile

Walker, awoke with a nice head cold. hospital in 1961;

The next blow: Our destination-the parked in Red Square

dry lakebed of El Mirage to watch the in 1960; and setting

last of the year’s speed trials-was shut a speed record

down because of 35 mph winds. with a '65 Dodge.

Instead we braved the ten-mile drive

to a waterside park in Newport Beach, the can eventually crept in (which wouldreignited my enthusiasm. We were in

back-to-basics mode (albeit with lots of happen to me in anything short of a mov-Calif. And although a questionable in-

modern conveniences) and enjoying every able Four Seasons), and we ended ourterior aroma grew steadily stronger, the

simple minute of it. We even forgot to test journey. I realized that I had initiallynovelty of our temporary home, the gor-

geous setting, and our sunset pizza party the flat-screen TV. missed the real point: Airstreams are hot

After a few days the realities of life in again because they are high-end folk art,Feeoafxckfortunejoyride (Ci)/10tmail.c0m

sculptures that represent Amer-

ican pride and skill. In an age

where people at the pointy end

of the earning curve are starting

to scale back on all that is bigMY PLEA T0 ALAN MULALLY
and wasteful, Airstreams are

authentic statements about theIn which the author begs Ford 3 CEO to produce the Ford Airslrearn.
simple life without sacrificing

looks or comfort-especiallycurrent family mover from Ford. The Ford AirstreamDEAR ALAN: I am writingto you because I recently

when you customize them (seehad the opportunity to spend an afternoon with concept actually achieved something that I honestly

box). To that point, 40% (andyour advanced-design team and their brilliant Ford thought would never be possible: It made me desire

growing) of today’s AirstreamAirstream hybrid hydrogen fuel-cell concept that you what is essentially a minivan. If it can win over a

buyers are “design aficionados”unveiled in Detroit. I was once again struck by its family-vehicle skeptic like me, imagine hovv easy it

who see Airstreams as cool retrovvill be to conquer buyers who already vvant such aback-to-the-future interpretation of Airstreams iconic

collectibles. They use them inshell, its clever solutions ior entertainment and com- thing-even with a simple gas engine or hybrid sys-

new ways, from mobile archi-fort, and its svvish yet simple interior. You may agree tem. But you must already know this. So when will

tecture and fashion statementthose superlatives are not usually put together tor any you announce production? -Sincerely, Sue

to guest house. (Tony furniture

supplier Design Within ReachHIGH CONCEPT

now offers an incredibly chicFord’s appealing

16-footer.)Airstream van

I just hope that Airstream

can bridge all its different cus-

tomers and remain faithful to

the details (bring back the sun-

burstl). As is true with many

longtime brands, the loyalists$95
have kept it alive-but it is the

new blood who will make or-..I I Qi#
break the future. E

84 ' F O R T U N E November 26, 2007

(b) Document rebuilt as a PDF file.

Fig. 1: Document segmentation and reconstruction.

mixes the benefits of Generic Programming (GP) and Object-
Oriented Programming (OOP) [11]. The library is written in
C++ as the language is well-known, widely available, standard-
ized, portable, mature, and versatile. The language is statically-
typed; C++ compilers generates efficient code and enable error
detection at compile time. Milena has also been designed
to be simple (just running algorithms requires only a basic
knowledge of C), user-friendly (it features automatic memory
management, run-time messages about unexpected behaviors,
etc.), and it proposes a syntax close to usual IP notations and
idioms.

B. DIA Framework Workflow

Such a platform is dedicated to several kinds of users.
Simple users who are expected to use the framework without
knowing how it works; Designers who have the knowledge
to write and assemble new algorithms; and Integrators who
need DIA features and specific toolchains in their projects.
To embrace this variety of users, we propose a multilayered
platform with features accessible through e.g. a GUI, an
interactive shell or scripts.

This platform is composed of a library of algorithms ded-
icated to DIA. It provides routines for preprocessing steps
(including binarization, show-through removal, deskew, de-
noising), text lines identification, non-text objects retrieval (ta-
bles, pictures, separators, etc.), line reconstruction (rebuilding
separators and tables), Optical Character Recognition (OCR)
integration, document reconstruction (converting a document
to XML, PDF and/or HTML outputs). All these components
form the building blocks from which DIA toolchains can
be assembled. Dedicated data structures are also provided

to handle intermediate results. They help to keep the code
readable and ensure reasonable performance. Memory is also
automatically managed through these structures so as to make
the work of developers easier.

We also provide pre-built generic toolchains for document
reconstruction, document text extraction, and text detection in
pictures. They all share most of their components. Some steps
are performed differently, like text detection. The document
reconstruction toolchain depicted in Fig. 2 accepts color, gray-
level and binary images. Scanned document may be skewed,
bear large black strips at the document’s edges, display show-
through effects, etc. Sometimes, the document itself is of
very poor quality and needs to be cleaned up. Our platform
proposes a set of preprocessing algorithms to prepare the
document for analysis. The provided basic toolchain includes
foreground extraction (see Fig. 5) to correct show-through ef-
fects, as well as deskew, binarization and denoising algorithms.
Note that we work on binary images since our approach is
based on Connected Components (CCs). We propose a set of
object filters to remove unwanted object according to a specific
criterion, which can be easily extended. In addition, delimiters
(lines, whitespaces and tab-stops) can be detected (see Fig. 6)
thanks to object alignments and morphological algorithms. The
platform proposes several variants of these algorithms more
or less sensitive to the quality of the delimiters. Delimiter
information is useful for the next step, text extraction. In some
cases, for document reconstruction for instance, we may need
to extract non-text elements such as pictures, drawing, tables,
etc. Our platform provides tools to locate and extract such
objects separately.

DIA results can be saved to an XML file. We have chosen

254

Image

Preprocessing

Detection of text
areas

Segmentation of
non-text objects OCR

TextObject
identification

Pictures,
diagrams,

...

XML XSLT
transformations

HTML

PDF

SVG

Layout analysis

Delimiters
extraction

Fig. 2: Document reconstruction workflow.

the PRImA PAGE format1 [12], which is used in the ICDAR
page segmentation competition series. From the XML file, the
whole document can reconstructed as a PDF or HTML doc-
ument using XSL Transformations (XSLT) [13]. Recognized
textual elements are rendered as blocks that can be selected
as character strings. Pictures, logos and drawings, extracted
from the original document image, are positioned such that
the initial layout is globally preserved.

All the algorithms are provided in the platform as a library
but they are also provided as command line tools to make them
easier to integrate. A portable GUI has also been developed
(see Fig. 3) to offer a user-friendly interface to the toolchain
that can be used by non-experts. Parts of the toolchain can be
customized from this graphical application; the user can then
inspect results before saving them as PDF or HTML outputs.

C. Sample Code

Listing 1 shows a example of simple C++ program using our
DIA module to extract text and non-text components from
a document image. The result of this analysis are used to
produce a structured document which is eventually saved as
an XML file.

Text is processed first. Text components are usually well
aligned, have a uniform size and are close to each other. So

1XML schema: http://schema.primaresearch.org/PAGE/gts/pagecontent/
2009-03-16/pagecontent.xsd.

Fig. 3: A Graphical User Interface of our DIA module featur-
ing document reconstruction services.

we try to regroup CCs by looking for their neighbors. We
propose several strategies more or less robust. For instance in
the case where the input is a structured document, every link
between two CCs should be validated in both directions; in
the case of a picture as input, there may be very few, possibly
isolated text components, therefore the previous check is not
enforced.

After text components are grouped together as text lines,
the processing chain ensures that these groups meet some
properties; corresponding links are invalidated if not. Again,
several filters are proposed and new ones can easily be added.
Filters can also be applied on a group of CCs to check a
property not just on a link between two CCs. Such features are
particularly useful when performing text extraction in pictures,
where many false positive may arise.

After this step, the groups of CCs are very likely text
components. Because of the nature of text characters and the
way the grouping is done, we use a text line reconstruction
algorithm which tries to merge groups of CCs as a single
text line. During this step, typographical information are
computed: font size, font color, space between character, space
between words, “x” height, baseline, etc. The text can be
recognized thanks to OCR software if needed. Final results
of the text extraction include text locations, text metadata and
the recognized character strings. The computation of each of
these aspects is optional and depends on the chosen algorithms
during this step.

IV. CONTRIBUTIONS AND RELATED PROJECTS

A. Third-Party Projects

Table I summarizes different aspects of some popular DIA
tools. On the one hand, Gamera and OCRopus are dedicated
to domain experts, who have little or no knowledge in pro-
gramming. They provide user interfaces or simple APIs so
as to make them easy to use. These frameworks are more
application-oriented. On the other hand, Leptonica is a library
providing IP tools and state-of-the-art algorithms in pure C
dedicated to users who both know C programming and DIA.
It cannot be used as-is by an untrained user.

255

TABLE I: Comparison of some DIA systems.

Aspects Systems
Gamera [3] Leptonica [14] OCRopus [15] Qgar [4] SCRIBO module

Target users Domain experts C Programmers Domain experts Domain experts and C++

programmers
C++ programmers and
non-initiated users

Target uses Development of
applications dedicated
to specific data sets

State-of-the-art imple-
mentations for proto-
typing and comparisons

DIA for books and old
documents

Development,
evaluation and tests in a
dedicated environment

Development of DIA
processing chains. DIA
for non-expert users.

Main character-
istics

Graphical platform for
DIA and pattern recog-
nition

General state-of-the-art
IP library

OCR oriented Platform for testing and
evaluating DIA algo-
rithms

Framework for creating
new DIA algorithms

Status Active Active Active Stalled Active
Documentation Well documented Well documented Man pages Minimalist Minimalist
User language Python, C++ (plug-ins) C Python C++ C++

Implementation
language

Python, C++ C C++ C++ C++

User interfaces GUI CLI CLI GUI, CLI GUI, CLI
IP tools Limited, but can use ex-

ternal libraries
Present, not generic Limited Present, not generic Present, generic

Document
reconstruction

None None Native HTML output;
PDF output with exter-
nal tool

None HTML and PDF out-
puts with external tool

License GNU GPL v2 Creative Commons v3 Apache v2.0 GNU LGPL/QPL GNU GPL v2
Supported OS GNU/Linux, Mac OS,

Windows
GNU/Linux, Mac OS,
Windows

GNU/Linux, Mac OS,
Windows

GNU/Linux, Windows GNU/Linux, Mac OS,
Windows (Cygwin)

Listing 1: Object extraction and document reconstruction.
// Open input image.
typedef image2d<value::label_16> L;
document<L> doc("input.png");
doc.open();

// Preprocessing.
toolchain::text_in_doc_preprocess(doc);

// Find delimiters.
image2d<bool>

delimiters = extract::delimiters(doc, 81);
doc.set_delimitiers(delimiters);

// Find components.
value::label_16 ncomponents;
component_set<L> components =
extract::components(doc, c8(), ncomponents);

// Build a set of lines and compute typological
// attributes for each text line.
line_set<L> lines = make::text_line_set(components);

// Recognize text.
lines = text::recognition(lines, "eng");
doc.set_text(lines);

// Extract non-text elements.
component_set<L> elements = extract::elements(doc);
doc.set_elements(elements);

// Save results.
scribo::io::xml::save(doc, "out.xml");

Qgar and Olena’s SCRIBO module are in-between projects,
both proposing a standard C++ library for DIA, command
line tools and GUIs. These libraries provide state-of-the-
art algorithms and research results in order to build new
toolchains, and aims to provide reference code bases. Thus
they remain easily extensible. However the design of Qgar is
more oriented towards research concerns (including evaluation
of methods), while the SCRIBO module is geared towards

application development.
The DIA systems presented in this section use different

strategies to provide IP tools, to be used as building bricks
of more complex DIA methods. Gamera features some IP
routines, but to provide a full-fledged IP framework, its
harnesses external libraries, such as VIGRA [16]. OCRopus
uses an IP library internally, but does not expose it through
its user interface. Leptonica and Qgar both provide basic tools
for IP. Finally, to our knowledge none of the aforementioned
frameworks support true generic algorithms definitions in their
user interfaces.

B. Limitations of Classical Tools

The aforementioned frameworks enable the development,
test and evaluation of DIA techniques. However their utility
regarding the maintenance, dissemination, reuse and extension
of the implemented methods is often limited. The applicability
of these tools is often circumscribed to a finite domain and it
may be hard to extend them to support new use cases or new
data types. Examples of limitations include:

1) Fixed Value Types: Most tools are able to process binary,
8-bit gray-level and 24-bits RGB color images, but they often
do not support other types, ranging from simple ones (for
instance gray-level values with better quantization, other color
spaces, etc.) to more complex values (e.g. user-defined features
vectors).

2) Lack of Flexibility: It is often useful to alter the behavior
of an algorithm or of a processing chain. For instance, one
may want to consider only a subset of an image (using a
computed or user-defined mask), or process only the red
channel of an RGB image, etc. When they are supported by
a DIA framework, these variations of algorithms are often
implemented by duplicating existing routines, or by creating
intermediate data. The former strategy does not scale with

256

the evolution of software and is error prone, while the latter
introduces space and run time penalties.

3) Limited Core IP Framework: The extensibility and us-
ability of a DIA framework not only depend on the existence
of high-level document-related methods, but also on the avail-
ability of lower-level IP routines. Of the third-party projects
presented above, only Leptonica and Qgar really provide an
IP core (though a non-generic one).

C. Contributions of the SCRIBO Module and Olena

The proposed SCRIBO module aims at providing a very
open framework to overcome these kinds of issues and en-
ables the development of many various processing chains.
It already contains components for every step of a classical
DIA workflow, from the inputs to the results (processed
images, recognized text, reconstructed documents, generation
of outputs in PDF or HTML formats).

SCRIBO’s main trait is that it is based on a mature,
stable and generic IP library. It has not been designed as a
standalone DIA platform but as a module of an IP framework,
Milena. SCRIBO benefits from the flexibility, reusability and
expressiveness of Milena. More precisely, this library contains
many algorithms, written in a concise and legible manner,
thanks to many objects representing usual IP entities (sites,
domains, neighborhoods, windows, functions, etc.) as well
as an intuitive syntax. These algorithms are reusable and
many of them provide optimized generic variants for common
input types [17]. The library offers many image data types,
including less common ones like graph-based images or cell
complex-based images, but also useful non-image types such
as histograms.

Moreover, Milena supports lightweight image types imple-
menting objects transformations named morphers. An image
morpher is an object based on an existing image; depending
on its nature, it alters the behavior of the initial image object.
A morpher does not own nor duplicate image data: it relies
on the underlying image for this. Morphers are a general tool
to implement operations such as views, proxies, decorators,
adapters, observers, etc. For instance they are useful to:

• adjust the interface of a type to a another one without
duplicating data (e.g., “virtually” thresholding a gray-
level image on-the-fly before passing it as input to a
connected components labeling algorithm expecting a
binary image);

• change the behavior of an image, e.g. by restricting its
domain using a predicate function or a subset object; or
by adding tracing or visualization mechanisms to an input
image (so as to observe the execution of an algorithm
without modifying its code);

• create a lightweight image based on one or several other
images(s). For example, one may create a virtual RGB
color image by combining three gray-level images, each
one corresponding to a red, a green and a blue channels;

• apply a function to an image in a lazy fashion (rotation,
subsampling, color-space conversion, etc.): the resulting

(a) Original picture. (b) Binarization (c) Multi-scale variant.

Fig. 4: Multi-scale binarization.

image object behaves as the result of the application of
the function to the original image.

Thanks to the generic design of Milena, image morphers are
considered just like any other image inputs by algorithms.
Their definition is also generic, so they are usable on any
compatible image type. Using morphers is cost-effective with
respect to memory and computation time, as they avoid
expensive intermediate images. They are concise both in their
definition and in their use, and they can be combined with no
limitations.

V. RESEARCH RESULTS

In addition to providing a DIA framework, the SCRIBO
module also contains novel algorithms and techniques for
some of the tasks performed during the analysis of a document.
Since the main topic of this paper is the framework itself, we
only mention these methods here. We will present these results
in depth in future publications.

A. Multi-Scale Binarization

One of our binarization algorithm is based on the technique
developed by Sauvola and Pietikäinen [18]. This algorithm
is currently one of the best for document binarization [19],
though some defects remain, including parameters which need
to be set up according to the content. We provide a fast multi-
scale version which automatically adjusts the parameters and
significantly improves the results (see Fig. 4).

B. Fast Robust Deskew

Our deskewing method has been designed to provide a quick
detection of little angles, between −25 and +25 degrees,
which covers most skews in practice. It is based on the
combination of a grayscale filtering algorithm, the Sobel
edge detection filter, and the classical Hough Transform [20].
The computational time of the Hough Transform is reduced
thanks to a filtering algorithm selecting relevant pixels at the
beginning of the deskewing process. The Sobel filter is then
used to find a range in which the Hough voting scheme is to
be applied.

257

(a) Original picture. (b) “Background” (c) “Foreground”

Fig. 5: Show-through effects removal.

Fig. 6: Tab-stop separators found using whitespace detection.

C. Morphological Show-Through Removal

In a document image, show-through effects can be consid-
ered as a background image over which objects like text and
images are superimposed. We process the original image using
morphological connected operators (area closing and opening)
[21] removing objects in order to obtain a background image.
From this image we deduce the foreground image (see Fig. 5).

D. Whitespace/Tab-Stop Detection

We provide algorithms to detect both whitespace and tab-
stop delimiters in a document [22] (see Fig. 6). Text compo-
nents are first connected and the resulting objects are grouped
together vertically when they are aligned. The presence of
whitespace nearby those groups enables the removal of false
positives. This step allows the identification of the document’s
layout and columns.

VI. CONCLUSION

In this paper we have presented a new DIA platform, pro-
vided as a module of a generic and efficient image processing
platform, Olena. The DIA toolchain described in this paper
takes approximately 2 seconds for a whole analysis without
OCR, with an Intel Core 2 Duo CPU at 3 Ghz and 2 Go of
RAM on a 300 dpi A4 document (2340 × 3150 pixels). It is
already used by the semantic desktop Nepomuk [23] of the
KDE environment, to extract text and associate metadata to
document images. All these tools will be part of the Mandriva
Linux distribution in the next few months both as binary and
source packages.

This module also offers yet unpublished original methods
for binarization, show-through extraction, deskew and tab-stop
detection, released as open source software under the GNU
GPL. This DIA framework is scheduled for a release along
with the next version of the Olena platform [2] this year.

ACKNOWLEDGMENT

The authors thank the reviewers for their useful comments
on this paper.

REFERENCES

[1] “SCRIBO, Semi-automatic and Collaborative Retrieval of Information
Based on Ontologies,” http://www.scribo.ws, 2010.

[2] EPITA Research and Developpement Laboratory (LRDE), “The Olena
image processing platform,” http://olena.lrde.epita.fr.

[3] M. Droettboom, K. Macmillan, and I. Fujinaga, “The Gamera frame-
work for building custom recognition systems,” in Proceedings of the
Symposium on Document Image Understanding Technologies (SDIUT),
2003, pp. 275–286.

[4] J. Rendek, G. Masini, D. Philippe, and T. Karl, “The search for
genericity in graphics recognition applications: Design issues of the Qgar
software system,” in Proceedings of the 6th IAPR International Work-
shop on Document Analysis Systems (DAS), S. Marinai and A. Dengel,
Eds., vol. 3163. Springer, 2004, pp. 366–377.

[5] B. Coüasnon, “DMOS: a generic document recognition method, ap-
plication to an automatic generator of musical scores, mathematical
formulae and table structures recognition systems,” in Proceedings of the
Sixth International Conference on Document Analysis and Recognition
(ICDAR), 2001, pp. 215–220.

[6] EPITA Research and Developpement Laboratory (LRDE), “SCRIBO
module for Olena,” http://olena.lrde.epita.fr/Modules#SCRIBO, 2010.

[7] ——, “Online demo of the SCRIBO module,” http://olena.lrde.epita.fr/
Demos#Scribo, 2010.

[8] J. B. Buckheit and D. L. Donoho, “WaveLab and reproducible research,”
Stanford University, Department of Statistics, Tech. Rep. 474, 1995.

[9] S. Fomel and J. F. Claerbout, “Guest editors’ introduction: Reproducible
research,” Computing in Science and Engineering, vol. 11, pp. 5–7, Jan.
2009.

[10] R. Levillain, Th. Géraud, and L. Najman, “Why and how to design
a generic and efficient image processing framework: The case of the
Milena library,” in Proceedings of the IEEE International Conference
on Image Processing (ICIP), Hong Kong, Sep. 2010, pp. 1941–1944.

[11] Th. Géraud and R. Levillain, “Semantics-driven genericity: A sequel
to the static C++ object-oriented programming paradigm (SCOOP 2),”
in Proceedings of the 6th International Workshop on Multiparadigm
Programming with Object-Oriented Languages, Paphos, Cyprus, 2008.

[12] S. Pletschacher and A. Antonacopoulos, “The PAGE (Page Analysis
and Ground-Truth Elements) format framework,” in Prooceedings of the
20th International Conference on Pattern Recognition (ICPR). Istanbul,
Turkey: IEEE Computer Society, Aug. 2010, pp. 257–260.

[13] W3C, “XSL transformations (XSLT) version 2.0,” http://www.w3.org/
TR/xslt20/, Jan. 2007, W3C Recommendation.

[14] D. Bloomberg, “Leptonica: An open source C library for efficient image
processing, analysis and operation,” http://code.google.com/p/leptonica/.

[15] T. M. Breuel, “The OCRopus open source OCR system,” in Document
Recognition and Retrieval XV, B. A. Yanikoglu and K. Berkner, Eds.,
vol. 6815. San Jose, CA, USA: SPIE, Jan. 2008, p. 6815 0F.

[16] U. Köthe, “Reusable software in computer vision,” in Handbook of Com-
puter Vision and Applications, B. Jähne, H. Haussecker, and P. Geißler,
Eds. San Diego, CA, USA: Academic Press, 1999, vol. 3: Systems
and Applications, pp. 103–132.

[17] R. Levillain, Th. Géraud, and L. Najman, “Une approche générique du
logiciel pour le traitement d’images préservant les performances,” in
Proceedings of the 23rd Symposium on Signal and Image Processing
(GRETSI), Bordeaux, France, Sep. 2011, in French, to appear.

[18] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,”
Pattern Recognition, vol. 33, no. 2, pp. 225–236, 2000.

[19] M. Sezgin and B. Sankur, “Survey over image thresholding techniques
and quantitative performance evaluation,” Journal of Electronic Imaging,
vol. 13, no. 1, pp. 146–168, 2004.

[20] L. A. Fernandes and M. M. Oliveira, “Real-time line detection through
an improved Hough transform voting scheme,” Pattern Recognition,
vol. 41, no. 1, pp. 299–314, 2008.

[21] P. Salembier and M. Wilkinson, “Connected operators: A review of
region-based morphological image processing techniques,” IEEE Signal
Processing Magazine, vol. 26, no. 6, pp. 136–157, November 2009.

[22] R. Smith, “Hybrid page layout analysis via tab-stop detection,” in
Proceedings of the 10th International Conference on Document Analysis
and Recognition, 2009 (ICDAR), Barcelona, Spain, Jul. 2009, pp. 241–
245.

[23] KDE, “Nepomuk, the social semantic desktop,” http://nepomuk.kde.org.

258

