

Data Extraction from Web Tables: the Devil is in the Details

George Nagy
Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, USA 12180

nagy@ecse,rpi.edu

David W. Embley, Spencer Machado
Computer Science Department

Brigham Young University
Provo, UT, USA 84602

embley@cs.byu.edu, admiralmachado@gmail.com

Sharad Seth, Dongpu Jin
Computer Science and Engineering Department

University of Nebraska – Lincoln
Lincoln, NE, USA 68588

seth@cse.unl.edu, jindongpu@hotmail.com

Mukkai Krishnamoorthy
Computer Science Department

Rensselaer Polytechnic Institute
Troy, NY, USA 12180

mskmoorthy@gmail.com

Abstract— We present a method based on header paths for
efficient and complete extraction of labeled data from tables
meant for humans. Although many table configurations
yield to the proposed syntactic analysis, some require access
to semantic knowledge. Clicking on one or two critical cells
per table, through a simple interface, is sufficient to resolve
most of these problem tables. Header paths, a purely
syntactic representation of visual tables, can be transformed
(“factored”) into existing representations of structured data
such as category trees, relational tables, and RDF triples.
From a random sample of 200 web tables from ten large
statistical web sites, we generated 376 relational tables and
34,110 subject-predicate-object RDF triples.

Keywords-visual table, relational table, RDF, header-paths

I. INTRODUCTION
In the first decade of table processing, researchers

concentrated on finding the underlying grid structure of
scanned tables from rulings or text alignments [1,2], and of
ASCII tables in email [3]. In the second decade the
emphasis was on locating and bounding HTML pages in
web tables. Reviews of earlier work can found in [4,5].

We target here the efficient extraction of the relations
of header cells to content cells and the representation of
these relations in appropriate data structures. Such multi-
dimensional indexing is a prerequisite for understanding
individual tables and for combining their contents into a
queryable database or populated ontology, as we proposed
for TANGO [6]. Similar goals are addressed in [7,8].

The foundations of syntactic table analysis were laid
by X. Wang in her 1996 PhD dissertation [9]. Although
she was interested primarily in reformatting tables for
various media and page sizes, her definition of categories
is equally suitable for layout analysis. Simple tables have
only two categories defined by their row and column
hierarchies, but more complex tables, such as her prime
grade book example of Year, Term and Mark, require
multidimensional indexing.

In [10] we presented our methods for extracting paths
through the header hierarchy to content cells, and for
decomposing these paths into orthogonal categories. Here
we propose procedures for more complex table layouts,
report additional experiments, and present a new tool for
rapid interactive correction. We demonstrate the
transformation of tables meant for human reading into a
relational database accessible by formal languages like
SQL [11] for relational tables or SPARQL [12] for RDF
triple stores [13]. Although many of the tables available at
large sites of statistical information—our primary focus—
are generated dynamically from databases, often no direct
public access is provided to the databases themselves.
Individual users must therefore reconstruct fragments of
the database of each source, or possibly of databases of
multiple sources, by harvesting and analyzing individual
tables. The proposed methods are intended to accelerate
this process.

Unlike most published work to date, we present an
end-to-end solution from HTML to SQL/SPARQL. Our
starting point is a collection of tables selected randomly
from ten large statistical web sites [14]. HTML tables can
readily be exported to Excel, which provides all the
necessary VBA primitives for manipulating grid cells in
our GUI. Comma Separated Value (CSV) files are easy to
parse with Python. Although the transformation from
HTML to CSV loses some formatting, the standard CSV
format suffices for a broad range of applications, including
intermediate states of table processing.

In Section II we discuss common table formatting
conventions that must be accommodated by automated
table analysis. Section III describes our heuristics for
finding header paths given these conventions and presents
our new GUI for interactive corrections. Section IV
reviews the extraction of Wang category trees using
mathematical software designed for the synthesis of logic
circuits. Section V demonstrates the transformation to
relational tables and RDF triples. Section VI reports our
experimental results.

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.57

242

II. TABLE FORMATTING CONVENTIONS
Since the invention of printing, many table formatting

conventions have been developed and refined for ease of
human access to tabulated data (cf. The Chicago Manual
of Style or the US Government Printing Office Style
Manual). Although tables can be prepared with any text
editor, most document preparation systems (e.g. Office,
Latex) offer elaborate provisions for constructing tables.

A table contains a rectangular configuration of data
cells, each of which can be uniquely designated by a
named row and a named column. More formally, a table
structure is a discrete rectilinear tessellation, or a
rectangular tiling, based on the partition of an isothetic
rectangle into rectangles defined on a rT x cT lattice [15].
The bottom-right region of a well-formed table (WFT)
contains a set of rd x cd content- (aka value-, data-, or
delta- in [9]) cells that can be uniquely specified by a
column-header path and a row-header path. Fig. 1
explains our notation and shows how four critical cells
define the segmentation of the table into stub, row header,
column header, and delta regions. (Although our
observations are drawn from a collection posted on the
project website [16], we present simplified examples
because most real tables are too large for the ICDAR page
allotment.)

The extraction of header paths must take into account
the commonly occurring configurations discussed below.

A. Virtual Headers
Wang defines rooted category trees. Category roots,

however, are often missing in real tables. In the table of
Fig. 1, which has two column categories A and B and one
row category C, it is necessary to add a virtual root header
CH1 (for Category Header 1) to the category A paths.

Figure 1. Table Notation. Lower-case letters above and numerals to the
left are not part of the table, just Excel-style cell addresses. Cells a1:b3

are the stub header (stub). The delta-cell region is c4:h5. The critical
cells are a1, b3, c4, and h5, which also uniquely define the header

regions. The column header path to cell f4 (which has cell-content D14)
is B-B2-A1. The corresponding row header path is C-C1.

B. Headers in the Stub
In the simple example of Fig. 2a it is not obvious

whether “A” in cell a1 (the only cell in the stub here) is the
root for category B or C. A more realistic example is
shown in Figs. 2b. The appropriate category trees cannot
be determined without semantic considerations. In the
large majority of the tables we have seen, however, the
contents of the stub are row headers: we would expect
AGE instead of VERMONT in merged-header-cell b1:e1.

 (a) (b)

Figure 2. (a) Is “A” a row or column header? In (b), if XXX is
GENDER, then it is is a column-root-header, but if XXX is

EDUCATION then it is a row-root-header.This is a three-catgory table.

C. Multi-row/column Indexing
In a table with rd rows and cd columns of delta-cells,

there must be rd row-header leaf-cells and cd column-
header leaf-cells. In the table of Fig. 3, one might at first
consider State to be the row-root-header, and all but the
first column as delta-cells. There are, however, multiple
rows with the same entry (AL, MI, MN). Even adding the
second column is insufficient because Minnesota Power
Inc appears twice. The row-header here consists of the first
three columns.

Figure 3. Three columns are required here to index columns.

D. Row/Column Order
In tables meant for humans, order can be suggestive. In

Fig. 4, the Rank column may at first appear inferior to the
State column as a row-header. But the table designer
would have put State on the left if the table were meant to
find the rank of various states instead of the states with
various ranks (the title of this table was "Top 3 States for
Trade via Port Huron, MI: 2008").

Figure 4. Row order is important here, but column order is less so.

Even if a numerical index satisfies our header path
uniqueness requirement, it is often of little value for
querying table data. Nevertheless omitting the Rank
column would entail loss of information because we don't
currently add explicit order information (and preserve the
original CSV cell addresses only as meta-data).

Rank State Total Exports Imports

1 Michigan 24,266 3,992 20,274

2 Illinois 8,259 4,669 3,590

3 Texas 7,001 4,635 2,366

Table 1.9 Net Summer Capacity of Plants Cofiring Biomass and Coal, 2007
(Megawatts)

State Company Name Plant
I.D.

Plant Name County

Biomass/
Coal

Cofiring
Capacity

Total
Plant

Capacity

AL DTE Energy Services 50407 Mobile Energy Services LLC Mobile 91 91
AL Georgia-Pacific Corp 10699 Georgia Pacific Naheola Mill Choctaw 31 78
AL International Paper Co 52140 International Paper Prattville Mill Autauga 49 90
AR Domtar Industries Inc 54104 Ashdown Little River 157 157
AZ Tucson Electric Power Co 126 H Wilson Sundt Generating Station Pima 173 559

MI S D Warren Co 50438 S D Warren Muskegon Muskegon 51 51
MI TES Filer City Station LP 50835 TES Filer City Station Manistee 70 70
MN Minnesota Power Inc 10686 Rapids Energy Center Itasca 27 28
MN Minnesota Power Inc 1897 M L Hibbard St Louis 73 123
MO University of Missouri-Columba 50969 University of Missouri Columbia Boone 6 91
MS Weyerhaeuser Co 50184 Weyerhaeuser Columbus MS Lowndes 123 123
NC Carlyle/Riverstone Renewable En 10381 Coastal Carolina Clean Power Duplin 44 44

 ROWS OMITTED

ROWS OMITTED

a b c d e f g h

1

2

3 A1 A2 A3 A1 A2 A3

4 C1 D11 D12 D13 D14 D15 D16

5 C2 D21 D22 D23 D24 D25 D26
C

B

B1 B2

A B1 B2
C1 D11 D12
C2 D21 D22

AGE
XXX M F M F

HIGH SCHOO 50% 65% 44% 78%
COLLEGE 20% 23% 22% 25%

VERMONT
<25 >25

243

E. Degenerate Tables and Lists
Our fundamental requirement is that each data cell can

be indexed uniquely. We call a table with rd =1 or cd =1
degenerate (such a structure can have multiple categories).
A structure missing any row or column header necessary
for indexing every data cell is a list. Classification of
multi-row and multi-column lists is addressed in [17].

F. Aggregates
Tables often contain row or column totals that can be

recovered from the rest of the table, as shown by Long on
Australian financial reports [18]. Other aggregates, like
median, standard deviation, or truncated mean, could also
be identified when the span of the aggregation operation is
clear. Sums are often identified by keywords like Sum or
Total which apply to the whole, or part of a, row or
column. In other cases more complicated semantic
processing may be required. In the Canada Statistics
tables, totals for all the provinces and territories appear
under CANADA. But CANADA also often appears as a row-
header root for the provinces, without any aggregate data.

III. CONSTRUCTION OF HEADER PATHS

A. CSV Version of the HTML table
The CSV text file is parsed by a Python program [10]:

The CSV structure must be modified because merged
cells, like the column-header root containing B in Fig. 5,
are unmerged. For the table of Fig. 1, B, B1, and B2 are
copied into all the empty cells, represented by null strings,
to their right. C is copied into the first empty cell of the
fifth row. Blanks within cell contents are replaced by
underscores, and some characters with special meanings in
downstream programs (“\”, “+”, “*”, “(“, “)”, etc.) are
replaced by ASCII strings like “backslashtoken”.

,,B,,,,,
,,B1,,B2,,
,,A1,A2,A3,A1,A2,A3
C,C1,D11,D12,D13,D14,D15,D16
,C2,D21,D22,D23,D24,D25,D26

Figure 5. CSV file and table for the Excel table of Fig. 1. Excel cell
addresses changed to x-y coordinates to allow negative indices.

Both the header paths and the paths through the delta
cell region consist of asterisk-separated-sequences of cell
contents in double quotes, with the sequences separated by
plus signs (Fig. 6). After the paths are extracted, the
original cell coordinates, enclosed by angle brackets <>,
are added to each path element. If needed, the program
creates negative x-coordinates for roots virtually moved
from the stub to left of the leftmost row-header column.
The stub and delta region are not necessarily contiguous.

B. Path Extraction Heuristics
The critical cells are located automatically if either of

two conditions holds: (1) the stub header is empty, and (2)
the delta cell region consists of numerical information. If
neither of these conditions holds, the table is tagged for
interactive identification of the critical cells.

Row header roots in the stub are added as roots of the
row headers below them. In the table of Fig. 2a, A would
be added to the row header paths C1 and C2 (if D11, D12,
D21, D22 were numerical).

rowpaths =
(("<0,3>C"*"<1,3>C1")
+("<0,4>C"*"<1,4>C2"));

colpaths =
(("<2,0>B"*"<2,1>B1"*"<2,2>A1")
+("<3,0>B"*"<3,1>B1"*"<3,2>A2")
+("<4,0>B"*"<4,1>B1"*"<4,2>A3")
+("<5,0>B"*"<5,1>B2"*"<5,2>A1")
+("<6,0>B"*"<6,1>B2"*"<6,2>A2")
+("<7,0>B"*"<7,1>B2"*"<7,2>A3"));

Figure 6. Row and column paths for table of Figs. 1 and 5.
The delta paths are simimlar but longer.

C. Interactive verification
VeriClick is an interactive Excel file with VBA macros

that sequentially presents for verification the CSV tables in
a given directory. It highlights the stub and delta-cell
region recognized by Python table parser. If they are
deemed correct, a click outside the table triggers the
display of the next table. If wrong, as in Figure 7, the
operator corrects the error by clicking first on the wrong
cell then on the right cell. At most 8 clicks are required.

Figure 7. VeriClick GUI for critical cells. In this table, the Python
program misconstrued cell a1 for the stub, which should be only a2.

Here the cause was poor table layout: “3” is part of the table title.

IV. EXTRACTION OF CATEGORY TREES
With the asterisks and plus signs added in the row and

column header paths, both resemble sum-of-products
algebraic expressions. This convention simplifies
extracting category trees from these expressions through
an algebraic factorization process. As the formulation is
completely symmetric for column and row header paths,
we describe below only the column header path analysis.

The algebraic interpretation is based on a covering
relation defined between each product term in the header
paths expression with the column covered by it. The
covering relation can be extended to sums of products by
taking the union of individually covered columns. For
example, the sum-of-products:

0 1 2 3 4 5 6 7

0 B

1 B1 B2

2 A1 A2 A3 A1 A2 A3

3 C C1 D11 D12 D13 D14 D15 D16

4 C2 D21 D22 D23 D24 D25 D26

3 Plastic waste by method of treatment or disposal. 1995-1997. Per cent
1995 1996 1997

Material re 0 2 2
Incineratio 15 15 14
Landfill 63 66 60
Export 2 3 3
Other/unkn 20 14 20
1 Source: Plastretur AS and Statistics Norway's manufacturing statistics.

244

("<2,0>B"∗"<2,1>B1"∗"<2,2>A1")+("<4,0>B"∗"<4,1>B1"∗"<4,2>A3") (1)
covers the first and the third columns of values in the table
in Fig. 5. Note that the cell labels <2,0>B and <4,0>B in
this example are identical in the original table. To enforce
this constraint, we drop the second (column) coordinate in
the header paths. As a consequence, the labels <2,2>A1
and <5,2>A1 in the colpaths expression are also treated as
being the same, in accordance with the normal
conventions of table layout.

The covering relation can be further extended to
factored forms, as long as the inverse multiplying-out
process can recover the original product terms from it. For
example, the whole colpaths expression can be factored as:
 <0>B*[<1>B1+<1>B2]*[<2>A1*<2>A2*<2>A3] (2)
from which the category trees for the headers are derived
by our Python program, as shown in Fig. 8. Here, the
program has stripped the indices and added the virtual
root header CH1 to represent the missing header for the
second column category.

Figure 8. Wang Categories for the table of Fig. 1

To facilitate the generation of relational tables (see
Section V), the program combines the category-tree
structures for the row and column headers into a canonical
form, as shown below for the example:

C*(C1+C2)+B*(B1+B2)+CH1*(A1+A2+A3) (3)
It also generates multiple views of the table resulting from
the different choices of the category chosen to provide the
attributes.

Another output produced by the program are the values
of the table features used in verification of the result
against visual inspection of the CSV table, as illustrated
below for the example of Fig. 1:

 Row categories: 1; Leaf nodes for row categories: 2
 Col categories: 2; Leaf nodes for col categories: 2, 3

A benefit of this formulation is that the algebraic
factorization problem has been studied extensively in the
past in fields ranging from symbolic mathematics [19] to
logic synthesis [20], and we gain leverage from the
sophisticated strategies developed in these fields. We map
the header paths expression to Boolean algebra and adapt
the logic synthesis tool Sis [21] for factorization. Interested
readers can find further details in our earlier work [10].

V. RELATIONAL TABLES & RDF TRIPLES
Given a factored expression for a table in canonical

form along with the table’s data indexed by the header
paths, we can generate a corresponding relational table
and populate it with the data. We can then query the table
with SQL and otherwise manipulate it along with other
tables in a standard relational database.

We assume that one of the category terms provides
the attributes for the relational table while the remaining
category terms provide key values for objects represented
in the original table. We do not know which category
would serve best for the attributes. We therefore
transform a table with n categories into n complementary
relational tables—one for each possible choice.

For the canonical expression (3) with the choice of the
term CH1*(A1+A2+A3) for the attributes along with the
header paths and data for the table of
Fig. 5, Fig. 9 shows the generated SQL create statement
and SQL insert statements for one of the relational tables.
In general, we

(1) transform each header path of the term chosen to
represent attributes into an attribute name (e.g., CH1_A1
in Fig. 9),

(2) transform the root node of the remaining header
paths into attribute names (e.g., C and B in Fig. 9),

(3) declare the attributes of these remaining header
paths to be the primary key (e.g., PRIMARY KEY (C, B) in
Fig. 9), and

(4) insert tuples into the generated table: the key
values are a cross product of the header paths below the
root from each category (e.g., {C1, C2} × {B1, B2} for
the four tuples in Fig. 9), and the data values are inserted
as directed by the header paths of each data value in the
original table (e.g., “D11” for the CH1_A1 attribute of the
tuple whose key is {C1, B1} as Fig.9 shows).

CREATE TABLE Fig_1(C varchar(2),B varchar(2),
 CH1_A1 varchar(3),CH1_A2 varchar(3),CH1_A3 varchar(3),
 PRIMARY KEY (C, B));

INSERT INTO Fig_1 VALUES("C1", "B1", "D11", "D12", "D13");
INSERT INTO Fig_1 VALUES("C1", "B2", "D14", "D15", "D16");
INSERT INTO Fig_1 VALUES("C2", "B1", "D21", "D22", "D23");
INSERT INTO Fig_1 VALUES("C2", "B2", "D24", "D25", "D26");

Figure 9. Tuple generation for the table of Fig. 1

For RDF triples we transform each data value in a
relational table into a (subject, predicate, object)-triple.
Fig. 10 shows the resulting RDF for the first tuple
generated for the relational table in Fig. 9. For each data
value (e.g., “D11”), the subject in the triple is an object
identifier for the tuple (e.g., the object identifier C-B_0 in
Fig. 10 obtained as a hyphenated concatenation of the
attributes of the primary key along with a subscript 0 for
the first tuple, 1 for the second, and so on). The predicate
for the triple is the attribute for the value (e.g., CH1_A1 for
the value “D11” and B for “B1” in Fig. 10). And the
object in the triple is the value itself (“D11” and “B1” in
Fig. 10).

B CH1 C
B1 A1 C1
B2 A2 C2

A3

245

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"
xmlns:Fig_1="mysql://localhost:3306/Fig_1#">

<rdf:Description
rdf:about="mysql://localhost:3306/Fig_1/C-B_0"
Fig_1:C="C1"
Fig_1:B="B1"
Fig_1:CH1_A1="D11"
Fig_1:CH1_A2="D12"
Fig_1:CH1_A3="D13"
/>
...
</rdf:RDF

Figure 10. RDF for the first tuple in Fig. 9

VI. EXPERIMENTAL RESULTS
All the CSV tables we processed were interactively

stripped of external metadata like table titles and footnotes.
(We have, since then, automated these tasks). The Python
segmentation routines found the critical cells on 197 of the
200 tables and generated path 197 files. The three that
failed have X or NA in some delta cells and non-empty
stubs. 26 of the 197 tables required interactive correction
of one or more critical cells before path extraction. The
interaction (up to eight mouse clicks) using VeriClick
takes on average about 5 seconds per table that needs to be
corrected, and under two seconds for confirmation.

If the header paths are correct, factorization produces
the correct canonical form. The factorization program
yielded the canonical expression for 196 of the 197 path
files. Some cells contained MySQL-disallowed characters
and some names exceeded the 64-character limit on
attribute names. We enclosed such names in quotes and
built correspondence tables to connect short names to full
names.

Our implementation selects each term in a canonical
expression to serve as the attributes of a generated
relational table. to-relational-table conversion
program generated and populated 376 MySQL relational
tables (2 tables for each of the two-category tables and 3
tables for each of the three-category tables). Of 196
tables, eight failed the parse: five tables had duplicate
attribute names, and three had bad syntax.

To generate RDF triples, our implementation converts
each value in a relational table to a triple. The to-RDF-
triple conversion program generated 188 RDF files and
34,110 subject-predicate-object triples.

ACKNOWLEDGMENTS
This work was supported by NSF Grants # 044114854 (at
RPI) and # 0414644 (at BYU) and by the Rensselaer
Center for Open Software. Mangesh Tamhankar (RPI)
developed VeriClick.

REFERENCES

[1] T.A. Bayer, Understanding Structured Text Documents by a Model
based Document Analysis System,: Procs. ICDAR’93, pp. 448–
453. Tsukuba Science City, Japan, 1993.

[2] J.C. Handley, Table Analysis for Multiline Cell Identification.
In:Kantor, P.B., Lopresti, D.P., Zhou, J. (eds.) Procs. DRR VIII
(IS&T/SPIE ElectronicImaging), vol. 4307. San Jose, CA, 2001.

[3] D. Pinto, A. McCallum, Wei, W.B. Croft, Table Extraction using
Conditional Random Fields, Procs. ACM SIGIR Conference on
Research and Development in Inf’n Retrieval, pp. 235–242, 2003.

[4] R. Zanibbi, D. Blostein, J.R. Cordy, A Survey of Table
Recognition: Models, Observations, Transformations, and
Inferences, J. Doc. Anal. Recognit. 7(1), 1–16, 2004.

[5] D.W. Embley, M. Hurst, M. Lopresti, G. Nagy, Table Processing
Paradigms: A Research Survey, J. Doc. Anal. Recognit. 8 (2-3),
Springer, Heidelberg, 66-86, 2006.

[6] Y. A. Tijerino, D.W. Embley, D. W. Lonsdale, and G. Nagy,
Towards Ontology Generation from Tables, World Wide Web
Journal, vol. 6(3), 261-285, 2005.

[7] B. Krüpl, M. Herzog, W. Gatterbauer, Using Visual Cues for
Extraction of Tabular Data from Arbitrary HTML Documents.
Procs. of the 14th Int’l Conf. on World Wide Web, 1000-1001,
2005.

[8] A. Pivk, P. Ciamiano, Y. Sure, M. Gams, V. Rahkovic, R. Studer,
Transforming arbitrary tables into logical form with TARTAR,
Data and Knowledge Engineering 60(3), 567-595, 2007.

[9] X. Wang, Tabular Abstraction, Editing, and Formatting, Ph.D.
Dissertation, U. Waterloo, Waterloo, ON, Canada, 1996.

[10] D.W. Embley, M. Krishnamoorthy, S. Seth, G. Nagy, Factoring
WebTables, Procs. ACM EIA/AIE, Syracuse, NY: Modern
Approaches in Applied Intelligence (Editors: .G. Mehrotra,
C.Mohan, J. C. Oh, and P. K. Varshney), June 2011.

[11] D. Chamberlin, SQL, Encyclopedia of Database Systems, L. Liu
and M. Tamer (eds.), Springer Verlag, 2009.

[12] http://www.w3.org/TR/rdf-sparql-query/
[13] http://www.w3.org/RDF/
[14] G. Nagy, R. Padmanabhan, M. Krishnamoorthy, R.C. Jandhyala,

W. Silversmith, Table Metadata:Headers, Augmentations and
Aggregates, Procs. DAS, pp. 507-510, Boston, MA, 2010.

[15] R.C. Jandhyala, G. Nagy, S. Seth, W. Silversmith,
M. Krishnamoorthy, R. Padmanabhan, From Tessellations to Table
Interpretation, L. Dixon et al. (Eds.): Calculemus/MKM 2009,
Springer-Verlag, Berlin, vol. 5625 LNCS, 422-437, 2009.

[16] http://tango.byu.edu/data/
[17] M. Yoshida and K. Torisawa and J. Tsujii, A Method to Integrate

Tables of the World Wide Web, "Proceedings of the International
Workshop on Web Document Analysis (WDA 2001), pp. 31-34.

[18] V. Long. An RDF-based Blackboard Architecture for Improving
Table Analysis, Procs. ICDAR 2009, Barcelona, Spain, 2009.

[19] D.E. Knuth, Factorization of Polynomials,.§4/6/2 in.
Seminumerical Algorithms: The Art of Computer Programming. 2,
Addison-Wesley, Reading, MA,. 1997.

[20] R.K. Brayton and C. McMullen. The Decomposition and
Factorization of Boolean Expressions, Procs. International
Symposium on Circuits and Systems, pages 49-54, May 1982.

[21] E.M. Sentovich E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton and
A.L. Sangiovanni-Vincentelli, SIS: A System for Sequential
Circuit Synthesis, University of California at Berkeley.
downloaded 11/4/10 from: http://www.eecs.berkeley.edu/Pubs/
TechRpts/1992/ERL-92-41.pdf.

246

