
Using Readers’ Highlighting on Monochromatic Documents  
for Automatic Text Transcription and Summarization 

 
Ricardo da Silva Barboza 

DES – CTG – UFPE 
Recife, PE, BRAZIL 

rsbarboza@gmail.com 
 
 

 
Rafael Dueire Lins 
DES – CTG – UFPE 
Recife, PE, BRAZIL 

rdl@ufpe.br, rdl.ufpe@gmail.com 
 
 

 
Victor Matheus de S. Pereira 

CEC – EST – UEA 
Manaus, AM, BRAZIL 

victor.msp18@gmail.com   

Abstract — Very often interested readers highlight documents 
with felt pens. Such marking may be seen as personal view of 
the most important aspects of the document, which are used to 
instantly draw the readers’ attention at. This article addresses 
ways of using the highlighting made by the reader of a book or 
a paper documents to automatically generate its text summary. 

Keywords — highlighting, paper documents, text summarization. 

 

I.  INTRODUCTION 
Over the centuries, the interested readers often 

underlined texts to somehow emphasize parts of a text for 
further reference. Yukio Horie invented the modern felt-tip 
pen in Japan in 1962. A marker pen, marking pen, felt-tip 
pen, or simply a marker, is a pen which has its own ink-
source, and usually a tip made of a porous material, such as 
felt or nylon. Highlighters, such as the one used in this 
sentence, are permanent markers filled with transparent 
fluorescent ink used to cover texts, emphasizing such 
content. Many highlighters come in bright, often fluorescent 
colors, which glow under a black light. The most common 
color for highlighters is yellow, but they are also found in 
blue, green, orange, and magenta varieties. Red highlighters 
can be purchased along with a green translucent sheet used to 
hide the highlighted material. Some yellow highlighters may 
look greenish in color to the naked eye. Table 1 presents the 
most usual colors of highlighters and the components they 
affect of the original text. 

Table 1. Component alteration due to highlighting 
Highlight Color Components 

 Yellow Blue 
 Blue Red/Green 
 Green Red/Blue 
 Orange Green/Blue 
 Cyan Red/Green 
 Magenta Red/Green/Blue 

Today, most readers highlight texts instead of 
underlining them. Highlighters are used to take notes in 
textbooks and every day becomes more popular. On the one 
hand, annotations, underlining or highlighting parts of a 
document may be perceived as “noise” physically damaging 
the document [1]. On the other hand, the highlighted text 
offers a summary of the most important parts of a document.  

To the best of the authors’ knowledge, reference [2] 
provides the first solution for highlighting removal in 

monochromatic document images. Real highlighting 
removal is far more complex than one may imagine at first 
glance, because the ink fades, sometimes non-uniformly, 
and interacts with the paper background. 

This paper enhances the algorithm presented in [2] to 
automatically generate summaries of documents with the 
author highlighted parts, as well as providing the possibility 
of removing it from the text image. The new algorithm was 
tested with the different colors of markers available in the 
market (Yellow, Blue, Green, Orange and Cyan). Besides 
that, a study on the optimization of the input parameters to 
allow maximizing the correct transcription rate by OCRs is 
performed.  

II. MAKING SUMMARIES WITH THE HIGHLIGHTED TEXTS 
Highlighting affects at least one RGB component of the 

original (non-highlighted image) lowering their intensity. 
Algorithm 1 tests if the components of a (originally) 
monochromatic document which was highlighted and 
scanned as a color document are further apart from each 
other than a controlled value which is named distance. The 
pixels with whose value of the RGB component goes 
beyond the distance threshold are assigned to the value of 
the highest intensity RGB component. The suggested value 
for the parameter distance equals 10. 

 
Algorithm 1 – Pseudo-code for the algorithm that removes 

highlighting that affects one or two primary RGB 
component in monochromatic documents.

for j <- 0 to image.height - 1 do begin 
  for i <- 0 to image.width - 1 do begin 
    red <- image.pixel[i,j].red; 
    green <- image.pixel[i,j].green; 
    blue <- image.pixel[i,j].blue; 
    rg <- |red – green|; 
    rb <- |red – blue|; 
    gb <- |green – blue|; 
    if ((rg > distance) or (rb > distance) or (gb > distance)) then      
    begin 
      if ((red >= blue) and (red >= green)) then 
        image.pixel[i,j].color <- (red, red, red);       
      if ((green >= red) and (green >= blue)) then 
        image.pixel[i,j].color <- (green, green, green); 
      if ((blue >= red) and (blue >= green)) then 
        image.pixel[i,j].color <- (blue, blue, blue); 
    end; 
  end; 
end; 

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.51

212



For cropping the highlighted text areas, A
be suitably modified. Readers often highlig
in the text, thus the algorithm may need to
page images of highlighted text simultaneou
line of the resulting image is stored in an
called “aux”. Decision making to check
affected by highlighting follows the same lo
Algorithm 1: if the value of the difference b
components exceeds the threshold distance
variable flag is set as true. The variable
information if the pixel which is under an
highlighted pixel in the same line. The deci
text or background is stored in the variable 
Pixel values below the variable threshold
text, while above it is considered backgrou
text follows a highlighted pixel then the p
column and line controlled by variable y
(text) in the final (summary) image. 
 

Algorithm 2 – Pseudo code of the algorith
the summary image with the highlighted p

aux  <- -1; 
flag <- false; 
for all images to be processed do begin 
  for j <- 0 to image_processed.height - 1 do beg
    for i <- 0 to image_processed.width - 1 do beg
      red <- image_processed.pixel[i,j].red; 
      green <- image_processed.pixel[i,j].green; 
      blue <- image_processed.pixel[i,j].blue; 
      if ((red + green + blue) div 3) > threshold) th
        rg <- |red – green|; 
        rb <- |red – blue|; 
        gb <- |green – blue|; 
        if ((rg > distance) or (rb > distance) or (gb >
          begin 
          if aux <> j then begin 
            aux <- j; 
            y <- y + 1; 
            brief_image.new_line; 
          end; 
          flag <- true; 
        end 
        else begin 
          if flag then flag <- false; 
        end; 
      end else begin 
        if flag then 
          brief_image.pixel[i,y] <- black; 
      end; 
    end; 
  end; 
end; 

 
Figure 1 (a) presents a highlighted text a

result of automatically cropping the highligh
processing with Algorithm 2. 

The tests performed showed that th
parameter distance close to 35 yielded the be

If the color of the marker is known a pr
may be optimized in the checking between 

Algorithm 1 must 
ght several pages 
o process several 
usly. The current 

n integer variable 
k if a pixel was 
ogic presented in 
between the RGB 
e, then the logical 
e flag keeps the 
nalysis is after a 
ision if a pixel is 
called threshold.  

d are considered 
und. If a pixel of 
pixel in the same 
y is set to black 

hm for creating 
arts of the text.

gin 
gin 

hen 

> distance)) then 

and (b) shows the 
hted image under 

he value of the 
est final results.  
riori, Algorithm 2 
color intensity of 

the RGB components. For instance, 
used, according to reference [2] one
component is affected. Then one ma
variation between the red-blue and g

 

(a) 
 

(b) 
Figure 1 – (a) Original image. (b)

Algorithm  2. Parameters:  thresho

III. THE PARAMETER THR
 ITS INFLUENCE IN THE PERFO

If the summary image is to be lat
few items need to be analyzed to y
rate [6][7]. They are: quality of 
correction, quality of image binariza
CUT-off point is controlled by 
section analyses its effect in the 
image. Figure 2 presents three r
variation of this parameter. One ma
the value of threshold the fader th
summary image, losing text pixels
threshold implies in leaving parts of

if a yellow highlighter is 
e knows that only the blue 
ay need only to check the 
green-blue components.  

 

 

) Image processed with 
old = 170; distance = 35. 

RESHOLD AND 
RMANCE OF OCRS  
tter processed via OCR a 
yield a good transcription 

the original text, skew 
ation.  As the binarization 
variable threshold, this 
quality of the summary 
results obtained by the 
ay observe that the lower 
he text will appear in the 
s even. A high value for 
f the highlight as noise in 

213



the summary image heavily degrad
performance.  

For a better analysis of the most suitab
threshold parameter its value was varied be
in 10 different page images, totaling 
affected by highlighting. Figure 3 prese
transcription rate for character recognition 
image. The OCR used was Cuneiform PRO 
 

(a) 

(b) 

(c) 
Figure 2 – Influence of the parameter threshold in 

(a) threshold = 70. (b) threshold = 170. (c) th
 

Figure 3 – Plot of the correct recogn
of characters with the variation of the param
The best transcription results were obtain

value of threshold between 190 and 200.  

IV. UNEVEN HIGHLIGHTING AND PRE-P

Readers whose mother tongue is a langu
Latin alphabet, and texts written in the 
highlighting tends is performed in a simila
writing: horizontally from left to right. No
are careful enough during highlighting 
uniformly marked text. Sometimes the ma
causing a faded highlighted area or the read
the marker pen in complete contact with th
These factors may cause non-uniform 

0.0

20.0

40.0

60.0

80.0

100.0

0 20 40 60 80 10
0

12
0

14
0

16
0ch

ar
ac

te
r r

ec
og

ni
ti

on
 (%

)

Threshold

ding the OCR 

ble value for the 
etween 0 and 255 
1,250 characters 
ents the correct 
of the summary 
OCR 6.0 [3]. 

 

 

 

a summary image.  
hreshold = 210. 

 
nition rate  
meter threshold. 

ned by setting the 

PROCESSING 
uage that use the 

same alphabet, 
ar way to cursive 
ot always readers 

to generate a 
arker ink is low 
der does not hold 
he paper surface. 
marking, which 

sometimes may not be perceptible to
presents a zoom at a part of a
document, for which it is difficult to
of the “S” are not painted by the yel

Figure 4 – Zoom into part of an un
 
Uneven highlighting yields ima

processed by Algorithm 2. The irre
becomes perceptible in the resulting
image in Figure 4 processed with
image shown in Figure 5, in which
“S” became split into two regions. 

Figure 5 – Figure 4 processed
 
Figure 6 shows an example o

highlighting in a line of a summary 
observe that the “artifact” often span
making some works completely unr
The effect of the automatic transcri
image is disastrous, as anyone can im

 

 
Figure 6 – Summary imag

highlighted text processed w
Analyzing the “dynamics” of 

observe that such artifact appears 
when the highlighted text has “holes
because the pixels to the right of the
the summary image. One possible so
highlighting in the original documen

 
Algorithm 3 – Pseudo code of 
processing the image.
y <- -1; aux <- -1; 
for j <- 0 to image_processed.height - 1
  copy <- false; 
  for i <- 0 to image_processed.width - 

18
0

20
0

22
0

24
0

o the naked eye. Figure 4 
an unevenly highlighted 
o observe that some parts 
low marker. 

nevenly highlighted text.

ages not suitable to be 
egular highlighted surface 
g image. For instance, the 
 Algorithm 2 yields the 

h it is easy to see that the 

d with Algorithm 2.

of the result of uneven 
image, in which one may 

ns through the whole line, 
eadable even for humans. 
iption of such part of the 
magine. 

 

ge from uneven  
with Algorithm 2. 
Algorithm 2 one may 
in the summary image 

s” in the marker painting, 
e hole are not copied into 
olution is to “correct” the 
nt, if it is still available.  

the algorithm for pre-

1 do begin 

1 do begin 

214



    if not(copy) then begin 
      red <- image_processed.pixel[i,j].red; 
      green <- image_processed.pixel[i,j].green; 
      blue <- image_processed.pixel[i,j].blue; 
    end; 
    if copy or (abs(r - b) > distance) then begin 
      if aux <> j then begin 
         aux <- j; y <- y + 1; 
      end; 
      copy <- true; 
      img_aux.pixels[i,y] <- image_processed.pixe
    end; end; end; 
image_processed <- img_aux; 
for j <- 1 to image_processed.height - 2 do begin
  for i <- 1 to image_processed.width - 2 do begi
    red <- image_processed.pixel[i,j].red; 
    green <- image_processed.pixel[i,j].green; 
    blue <- image_processed.pixel[i,j].blue; 
    rg <- |red – green|; 
    rb <- |red – blue|; 
    gb <- |green – blue|; 
     if ((red + green + blue) div 3) > threshold) an
       ((rg > distance) or (rb > distance) or (gb > di
begin 
      red <- image_processed.pixel[i,j-1].red; 
      green <- image_processed.pixel[i,j-1].green; 
      blue <- image_processed.pixel[i,j-1].blue;     
      if ((red + green + blue) div 3) > threshold 
        image_aux.pixel[i,j-1] <- RGB(red, green, 0
      red <- image_processed.pixel[i,j+1].red; 
      green <- image_processed.pixel[i,j+1].green;
      blue <- image_processed.pixel[i,j+1].blue;    
      if ((red + green + blue) div 3) > threshold 
        image_aux.pixel[i,j+1] <- RGB(red, green, 
      red <- image_processed.pixel[i-1,j].red; 
      green <- image_processed.pixel[i-1,j].green; 
      blue <- image_processed.pixel[i-1,j].blue;     
      if ((red + green + blue) div 3) > threshold 
        image_aux.pixel[i-1,j] <- RGB(red, green, 0
      red <- image_processed.pixel[i+1,j].red; 
      green <- image_processed.pixel[i+1,j].green;
      blue <- image_processed.pixel[i+1,j].blue;   
      if ((red + green + blue) div 3) > threshold 
        image_aux.pixel[i+1,j] <- RGB(red, green, 
    end; end; end; 
  image_processed <- image_aux; 

 
A neater solution is provided by pre

document finding the neighboring of each p
scans the original document and generates 
image with all highlighted blocks in the doc
second step is to correct the unevenness
highlighting by making it uniform, thus mak
de processed by Algorithm 2. 

Pré-processing the image in Figure 4 with 
cascading the resulting image in Algorithm 
image shown in Figure, in which the segmen
disappears.  

 

els[i,j]; 

n 
in 

d 
istance)) then 

 

0); 

; 

0); 

 

0); 

; 

0); 

e-processing the 
ixel. Algorithm 3 
a color summary 
cument. Then the 
s of the marker 
king it suitable to 

Algorithm 3 and 
2 one obtains the 
ntation of the “S” 

Figure 7 – Figure 4 pre-process
and filtered with Alg

The unevenness and “holes” in t
image of Figure 6 were removed an
Figure 8 looks as if it were in boldfa

 

Figure 8 – Summary image of Figu
 

The pre-processing step performe
removed the unevenness of the 
effects in the transcription rate by O
9. The best recognition rates are shif
for values between 127 and 156 of 
observe that pre-processing increase
rate reaching almost 100% correct c
 

Figure 9 – Graph of the correct reco
for the parameter threshold af

V. PERFORMAN
 

Algorithm 2 has linear asymptot
the number of pixels to be processe
images with 0.3 Mpixels the proces
image in a computer with c.p.u
Technology MK-36 1.99 GHz with
2.2 seconds. Processing images with
time was 23.1 seconds per image in 

The graph of Figure 10 exhibits
time for 20 runs of Algorithm 2 in i
shows that adding more images to 
rise in processing time is linear and 
used it takes around 5.9 seconds for 

 

0.0

50.0

100.0
0 29 58 87 11
6

14
5

ch
ar

ac
te

r r
ec

og
ni

ti
on

 
(%

)

Thresh

ed with Algorithm 3 
gorithm 2
the text of the summary 

nd the text in the image of 
ace. 

 
ure 6 with pre-processing. 

ed by Algorithm 3 which 
highlighting also yields 

OCRs, as shown in Figure 
fted left wise in the graph 

f threshold. One may also 
ed the overall recognition 
haracter recognition. 

 
ognition rate of characters 
fter pre-processing. 

NCE 

tic complexity O(n) with 
ed in the input image. For 
ssing time for each input 

u. AMD Turion Mobile 
h 1.75 GB of RAM, was 
h 3.8 Mpixels the elapsed 
the same platform. 

s the average processing 
images of 0.3 Mpixels. It 
the processing batch the 
in the hardware platform 
each Mpixel of input.  

14
5

17
4

20
3

23
2

hold

215



 
Figure 10 – Graph of processing time  

elapsed for images of 0.3 Mpixels. 

Pre-processing the image with Algorithm 3 implies in a 
processing overhead of 1.6 times the time elapsed in using 
Algorithm 2 only, on average. If unevenly highlighted areas 
appear frequently, this overhead is worthwhile as the correct 
character transcription rate by OCR largely increased for 
those areas.  

 

VI. CONCLUSIONS AND LINES FOR FURTHER WORK 
This paper presents an efficient algorithm for the 

automatic removal of highlighting besides making possible 
the generation of images that are formed only with the 
highlighted texts as a summary of the original input. The 
input document must be originally monochromatic and 
highlighted with a felt-pen marker of any color 
commercially available, either fluorescent or not. The input 
document should be scanned in 200 d.p.i. true color. The 
summary image may be automatically transcribed using a 
commercial OCR with good results. 

 If the marker paint is uneven for some reason (low ink 
level, incorrectly holding the pen, etc.) the resulting 
summary image exhibits “holes” that degrade the character 
recognition rate. A pre-processing scheme introduced herein 
besides correcting such “artifact” yielding a better summary 
image highly increases the OCR performance, reaching 
almost 100% correct character recognition.  

Another optimization already implemented, which was 
omitted here due to space restrictions, is to allow a different 
treatment for the different colors of the marker. This allows 
the reader to have the option of generating different texts 
according to the color used. For instance, some readers 
highlight parts of the text he agrees with in yellow and in 
red the ones he does not agree. The Tool would give the 
option of either generating one single text or separating 
them, adding new flexibility. 

Several lines for further work are already in progress. 
The first of them is related to correctly reformatting two 
column documents in the generation of the summary image. 
Another research path also being currently pursued is 
mapping the color of the marker used for highlighting in the 
color of the font of the transcribed text. This can be done by 
introducing a post-processing phase in which the color of the 

original highlighting would be mapped into a different color 
in the transcribed text. A more ambitious, by far a more 
complex research line, is addressing the case of color 
background highlighted documents for marker removal and 
summarization. In general, separating text and background in 
degraded documents is a complex task [4], highlighting 
makes it even more complex. 

A different research path that may also be explored is the 
use of a noise classifier, such as the one described in [5], to 
select the highlighted areas for different colors of markers. 
The highlighted pixels would be processed by a simplified 
version of Algorithm 2 and Algorithm 3. 

One of the referees in ICDAR 2011 to this paper drew 
the authors’ attention to the existence of two patents that 
address the same problem [7][8]. The solution proposed 
here seems to be more general (as different colors of 
markers are allowed) than the one in the patents [7][8], that 
seems to focus only in yellow highlighting. Besides that, for 
the yellow marker the solution in this paper seems to be 
more time efficient, whose effectiveness in is still to be 
examined as those documents do not present any real 
example. 

The code for the algorithms and test images are 
available by requesting to the first author of this paper. 

ACKNOWLEDGMENTS 
V.M.S.P. acknowledges the research student grants 

received from Fundação de Amparo à Pesquisa do Estado do 
Amazonas – FAPEAM, BRAZIL. 

REFERENCES 
[1] Lins, R.D. A Taxonomy for Noise Detection in Images of Paper 

Documents - The Physical Noises. ICIAR 2009. LNCS v. 5627. p. 
844-854, Springer Verlag, 2009. 

[2] Barboza, R.S., Lins, R.D., Mattos, V. S. Removing Highlighting in 
Paper Documents. VII IEEE International Telecommunications 
Symposium, ITS2010.  Manaus-AM, Brazil, September 2010. 

[3] Cuneiform PRO OCR 6.0.  
http://cuneiform-pro-ocr.softwareandgames.com/ visited 21/02/ 2011. 

[4] Leedham, G., Varma, S., Patankar, A., Govindaraju, V., Separating 
text and background in degraded document images—a comparison of 
global thresholding techniques for multi-stage thresholding, 
Proceedings of the Eighth International Workshop on Frontiers in 
Handwritten Recognition, pp. 244–249, 2002. 

[5] Lins, R.D, Silva,  G.F.P., Banergee, S., Kuchibhotla, A. and Thielo, 
M. Automatically Detecting and Classifying Noises in Document 
Images, ACM-SAC`2010, ACM Press, v.1. p.33 – 39, March 2010. 

[6] Gatos, B., Papamarkos, N., and Chamzas, C. Skew detection and text 
line position in digitized documents. Pattern Recognition, V 30(9): 
1505-1519, 1997. 

[7] Mello, C. A. B. de, Lins, R.  D. A Comparative Study on Commercial 
OCR Tools In: Vision Interface'99, 1999, Québec. v.1. p.224 – 232. 

[8] R. Nagarajan, et al. Automated Method for Extracting Highlighted 
Regions in Scanned Souce. U.S. Patent 2007/0253620, Nov. 1, 2007. 

[9] R. Nagarajan. Automated Method and System for Retrieving 
Documents Based on Highlighted Text from a Scanned Source. U.S. 
Patent 2007/0253643, No. 1, 2007.

 

0.0

5.0

10.0

1 2 3 4Ti
m

e 
(s

ec
on

ds
)

# Pages Processed

216


