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Abstract—This paper is focused on the optimization of the
computational efficiency of a multi-stream word recognition
system. The aim of this work is to optimize the multi-stream
decoding step in order to reduce the recognition time and the
complexity to allow combining a large number of streams.
Two different multi-stream decoding strategies are compared
based on two-level and HMM-recombination algorithms. Ex-
periments carried out on public handwritten word databases
show significant speed gains at decoding while keeping the
same performances, in addition to new insights for combining
a large number of streams.

Keywords-Multi-stream HMM; Decoding; Two-level; Hand-
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I. INTRODUCTION

Recently, there has been significant interest in the use

of multi-stream hidden Markov models (HMMs) for hand-

writing recognition [3], [4], [5]. The multi-stream paradigm

provides a particular way of combining individual feature

streams using cooperative HMMs and presents multiple

advantages: the topology of HMM can be adapted to each

source of information, the combination can be adaptive:

some sources of information can be weighted, or even

rejected if they are not reliable. In addition, the multi-

stream approach combines the likelihoods of multiple in-

formation sources at a coarser level than HMM state such

as the character or syllable level, thus allowing asynchrony

between the state sequences of the streams. Hence, we

have demonstrated in [3] the superiority of the multi-stream

strategy compared to the classical combination methods in

case of handwritten word recognition. However, the gain

in recognition performance was achieved at the expense

of higher computational complexity due to the separate

modeling of the different observation streams. In this pre-

vious work, decoding a multi-stream HMM was performed

with HMM-recombination algorithm. This algorithm con-

sists in building a product (composite) HMM where the

number of states exponentially increases with the number

of streams, resulting in a high computational complexity.

This algorithm has a limitation for combining more than

two streams when dealing with large lexicons [6]. While

most of the research efforts on handwriting recognition have

focused on improving recognition performance, less works

have been devoted to optimizing the recognition time. Some

optimization techniques presented in the literature are based

on pruning mechanisms that attempt to reduce the lexicon

size prior to the recognition [9], [13]. Other approaches

attempt to reorganize the lexicon to exploit the presence of

common prefixes in words that have similar spellings and

avoid repeated computation using a lexicon tree structure

[8], [15]. Other techniques, consist in reducing the search

effort by introducing heuristics into the search algorithms

such as A*, beam search, and two-level [14], [7].

In this paper, we present an optimized multi-stream decod-

ing strategy based on two-level algorithm and we compare

its computational complexity to the HMM-recombination

algorithm. We demonstrate that the mutli-stream two-level

decoding procedure reduces the computational complexity

without any loss in the recognition performances. The rest of

this paper is organized as follows: in section 2, we describe

the multi-stream formalism and the decoding algorithms.

Section 3 presents a comparison and a discussion about the

computational complexity of the two decoding strategies. In

section 4, we present a description of the overall recognition

system. Finally, Section 5 provides experimental results

followed by a conclusion and future works.

II. MULTI-STREAM PARADIGM

The multi-stream paradigm [12], [10] provides an adaptive

method to combine several individual feature streams using

cooperative HMM. This problem can be formulated as

follows: assume an observation sequence X composed of K
input streams Xk(k = 1, . . . ,K) representing the utterance

to be recognized, and assume that the hypothesized model M
for an utterance is composed of J sub-unit models Mj(j =
1, . . . , J) associated with the sub-unit level at which we

want to perform the recombination of the input streams (e.g.,

characters). To process each stream independently of each

other up to the defined sub-unit level, each sub-unit model

Mj is composed of K models Mk
j (possibly with different

topologies). Recombination of the K stream models Mk
j is

forced at some temporal anchor states (⊗ in Figure 1). The

resulting statistical model is illustrated in Figure 1. Detailed

discussion of the mathematical formalism is given in our

previous work [3].

Decoding multi-stream models requires a more sophis-

ticated procedure than the standard Viterbi search. Two
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Figure 1. General form of K-stream model with anchor points between
sub-units models

different algorithms have been proposed to solve the problem

of decoding.

A. HMM-recombination algorithm

Here, a composite (or product) HMM is built by merging

a n-tuple of states from the n stream HMMs [10]. The topol-

ogy of this composite model is defined so as to represent

all possible state paths given the initial HMM topologies.

Figure 2 shows an example of a multi-stream HMM with 2

streams and its corresponding product HMM.

The product HMM parameters are determined as follows:

The transition probabilities of the product HMM are derived

from the transition probabilities of the 2 single stream

HMMs assuming independence of the models between 2

recombination states. For example:

P (a−B|a−A) = P (a|a)× P (B|A)

The conditional observation likelihoods of the composite

HMM are obtained using a combination of the observation

likelihoods of the single-stream components, for example:

P
(
X1 (t) , X2 (t) |a−A

)
= P

(
X1 (t) |a

)α
P
(
X2 (t) |A

)(1−α)

where X1(t) (similarly, X2(t)) is the observation vector

corresponding to stream 1 (similarly, stream 2) and α the

reliability of stream 1 (0 ≤ α ≤ 1 ). Decoding under such a

model requires computing a single best path using the well

known Viterbi decoding algorithm. We have demonstrated

in [3] that this algorithm have a high complexity especially

when dealing with a large number of streams. An alternative

consists in using the two-level decoding algorithm.

B. Two level dynamic programming

This decoding strategy was initially proposed in [11]

to optimize the Viterbi algorithm in the case of large

vocabulary recognition problems. The decoding takes place

in two steps. A first dynamic programming process is applied

at the sub-unit level (phoneme or character models) and

each sub-model is scored on arbitrary portions of the frame

data. Secondly, sub-models are merged together in order

to find the best overall score, during a second dynamic

programming stage at word level.

In the case of multi-stream HMMs, the first level of this

algorithm is slightly modified and each stream HMM is

independently decoded for each possible portion of the frame

Figure 2. Example of a multi-stream HMM with 2 streams and its
corresponding product (composite) HMM

data, the individual stream scores are then combined for

further use at the second level. In the second level, only

the character boundaries are decoded without the necessity

of going through the HMM states. The details of the first

level are presented as follows:

Level 1 : Two-level algorithm

1: For each stream Sk and each observation stream

Xk
t (k = 1, . . . ,K)

2: For each character model Mk
j (j = 1, . . . , C)

3: For each beginning frame b, (b = 1, . . . , T − 1)
4: For each end frame e, (e = b + 1, . . . , T ) compute the

best score corresponding the best state sequence.

5: Store the obtained likelihood in Ψ(Mk
j , b, e)

6: Combine the stream likelihoods using a

combination function f , Ψ(Mj , b, e) =
f(Ψ(M1

j , b, e), . . . ,Ψ(MK
j , b, e))

The first decoding level can be viewed as a standard

Viterbi algorithm which is used to decode the best character

alignment for all possible positions of the character within

the observtion stream. The last step of the first level consists

in combining the different stream scores using a combination

function as a weighted sum of log-likelihood. Once scores

are computed for all character stream models, they can be

reused to decode any lexicon, hence we avoid repeating

character decoding for each hypothetized occurrence of the

character at the some position while decoding each word

of the lexicon. Given these scores, the second level of the

computation pieces together the individual character scores

to maximize the overall accumulated score over the entire

word. This can be accomplished using dynamic program-

ming as follows:
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L(c1, . . . , cl, e) = max
1≤b≤e

[L(c1, . . . , cl−1, b− 1)×Ψ(cl, b, e)]

where L(c1, . . . , cl, e) is the score of the best path ending

at frame e using the character sequence c1, c2, . . . , cl. The

best path ending at frame e using exactly l character models

is the one with maximum score over all possible beginning

frames, b, of the concatenation of the best path ending at

frame b − 1 using exactly l − 1 character models fold the

best score of the character model cl from frame b to frame

e (calculated at the first level). Therefore, the second level

consists as follows:

Level 2 : Two-level algorithm

1: For each word in the lexicon

2: For each character composing the word

3: For each end frame e (2 ≤ e ≤ T )
4: Compute the score of the best concatenation of

character until frame e: L(c1, c2, . . . , cl, e) =
max1≤b≤e [L(c1, c2, . . . , cl−1, b− 1)×Ψ(cl, b, e)]

III. COMPUTATIONAL COMPLEXITY

We compare the computational complexity of the two

decoding algorithms. In the case of the two-level decoding

algorithm, the first level is independent of the lexicon size

and its computational complexity is given by O(T 2N2KC)
where T is the length of a sequence of observations, N
the number of states per character model, C the number

of character models and K the number of streams. In the

second level, the computation depends on the word in the

lexicon, and the complexity is O(T 2LV ), where L is the

average length of the words in the lexicon and V is the

number of words in the lexicon. The approximate compu-

tational complexity for the two-level decoding algorithm is

then O(T 2N2KC + T 2LV ).
In the case of the HMM-recombination algorithm, the

Viterbi algorithm is applied to decode the product HMM.

The complexity of the Viterbi algorithm is O(T (LN)2V ). In

the product HMM, the number of states increases to LNK .

Therefore, the complexity of the HMM-recombination algo-

rithm becomes O(T (LNK)2V ) = O(TL2N2KV )
Note that by just looking the complexity expressions of

the two algorithms, it is hard to see which strategy is better.

To get a feeling on the computational complexity of each

decoding strategy, typical values of T = 100, L = 5, N = 4,

K = 4, V = 100, C = 26 results in O(16384 × 107)
for HMM-recombination algorithm, and in O(2.164× 107)
for two-level algorithm. Tables I, II present respectively, the

variation of the the approximate computational complexity

of the two algorithms with respect to the number of streams

K and the lexicon size V . By analyzing the values in

these tables, it is possible to have a better idea of the

computational complexity of each decoding strategy. It is

clear that the two-level algorithm is more advantageous

when dealing with a large lexicon size and a great number

of streams.

Table I
VARIATION OF THE OPERATIONS NUMBER (×104) WITH RESPECT TO

THE NUMBER OF STREAMS K ,
T = 100, L = 5, N = 4, V = 100, C = 26

Two-level HMM-recombination
K=2 1332 6400
K=3 1748 102400
K=4 2164 1638400
K=5 2580 26214400

Table II
VARIATION OF THE OPERATIONS NUMBER (×104) WITH RESPECT TO

THE LEXICON SIZE V , T = 100, L = 5, N = 4,K = 3, C = 26

Two-level HMM-recombination
V=100 1748 102400
V=1000 6248 1024000
V=2000 11248 2048000
V=5000 26248 5120000

Note that we can reduce the complexity of the two-

level algorithm. In fact, T 2 can be reduced to T (T − D),
where D is an estimation of the duration of the character

models, without loss of accuracy. The complexity of the first

level can be also reduced assuming that the same HMM

topology is used for all streams, in this case, all stream

character HMMs can be simultaneously decoded and the

complexity is reduced to T 2N2C. Consequently, the overall

complexity of the two-level algorithm can be reduced to

O(T (T −D)(N2C + LV )).

IV. RECOGNITION SYSTEM DESCRIPTION

The recognition system is based on a multi-stream HMM

and proceeds on different stages as presented in figure

3. In the first step, pre-processing operations like slant

correction, smoothing and normalization are applied to the

word image in order to eliminate noise and to simplify

the procedure of feature extraction [3]. The next step is to

extract features from the input word image. Two types of

features are considered: (i) contour based features and (ii)

density based features. Contour based features are extracted

from the lower and the upper contours, and density based

features are computed on two different sliding windows

with different width. Therefore, each feature type (contour

or density feature) defines two feature streams representing

the input word image. A complete description of features is

given in [3]. Each stream model is then separately trained

using embedded training where all character models are

trained in parallel using Baum-Welch algorithm applied on
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word examples. The last step is recognition during which

the HMM models are simultaneously decoded according to

the multi-stream formalism presented above.

Figure 3. The multi-stream recognition system architecture

V. EXPERIMENTAL RESULTS

Experiments have been conducted on two publicly avail-

able databases: IFN/ENIT benchmark database of arabic

words and RIMES database for latin words. The IFN/ENIT

[2] contains a total of 32492 handwritten words (Arabic

script) of 946 Tunisian town/village names written by 411

different writers. Some town/village names occur in the

database with slightly different writing style according to

the presence or absence of ”shadda” for example. It follows

that our lexicon is made of about 2,100 valid entries. Four

different sets (a, b, c, d) are predefined in the database for

training and one set (e) for testing. The RIMES database [1]

is composed of isolated handwritten word snippets extracted

from handwritten letters (Latin script). In our experiments,

36000 snippets of words are used to train the different

HMM classifiers and 7464 words are used in the test.

The dictionary is composed of 1612 words. During these

experiments, we are interested in evaluating the two aspects:

recognition accuracy and recognition time.

A. Recognition accuracy

Table III shows the experimental results of the perfor-

mance of our recognition system using 4 different single

streams (upper contour, lower contour and density with

two windows of different width; Density1 and Density2

correspond to the windows of 8-pixel and 14-pixel widths,

respectively) as a function of the size of the list of word

hypothesis.

We present in table IV the best performances obtained

by combining 2, 3 and 4 streams. Multi-stream two-level

decoding algorithm is used for these experiments. As ex-

pected, we obtain exactly the same performances obtained

by the HMM-recombination algorithm. The main advantage

Table III
INDIVIDUAL PERFORMANCES USING SINGLE STREAM FEATURES

IFN/ENIT RIMES
Top 1 Top 2 Top 1 Top 2

Upper contour 70.50 78.60 54.10 66.40
Lower contour 63.50 73.10 38.93 51.57

Density1 65.10 73.00 53.23 65.83
Density2 68.70 78.10 52.23 65.40

of the two-level algorithm is to reduce the computational

complexity which allows combining more than 2 streams

when dealing with a large lexicon size, this was impossi-

ble using HMM-recombination algorithm due to the high

computational cost.

Table IV
MULTI-STREAM RECOGNITION PERFORMANCES

IFN/ENIT RIMES
Top 1 Top 2 Top 1 Top 2

2-stream 79.60 85.70 74.10 79.40
3-stream 79.83 86.93 74.32 79.67
4-stream 80.23 87.57 74.68 80.12

It must be stated that the main purpose of these experi-

ments was to establish the contribution of additional streams

to the recognition performances. Regarding this investiga-

tion, the experimental results show in both cases (RIMES

and IFN/ENIT) interesting improvements by combining 2

streams. In fact, the best 2-stream recognition rate is 79.6%

in Top 1 on IFN/ENIT and is obtained by combining upper

contour and density2 features. The gain is 9.1% compared

to the best single stream recognition rate. Similarly, the best

2-stream recognition rate on RIMES database is 74.10%

by combining upper contour and density1 features, which

corresponds to a gain of 20% compared to the best single

stream recognition rate. On the contrary, when combining

more than two streams, the experimental results show in

both cases (IRONOFF and IFN/ENIT) the same moderate

improvement of recognition performance. We think that this

can be explained by the nature of the combined feature

streams which do not provide sufficient complementary

information.

B. Recognition time

We are interested in this section in comparing the recog-

nition time of the two decoding strategies. The recognition

time is defined as the time in seconds required to recognize

one word and it is measured in CPU-seconds, which is

the time the recognition process has exclusive use of the

central processing unit of a computer with a multitasking

operating system. In these experiments, the recognition

time covers only the recognition process, excluding pre-

processing and feature extraction steps. The machine used

for these tests is Intel E7340, 2.4 GHz processor, 2GB
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of RAM memory. Table V compares the word recognition

time of the two decoding strategies with respect to the

number of streams and the lexicon size. The performance

of the HMM-recombination algorithm is completely flawed

on large vocabulary tasks especially when dealing with large

number of streams. In counterpart, the two-level algorithm

presents a significant improvement in recognition time and

appears less sensitive to the variation in the number of

stream and the lexicon size. Despite these improvements,

the recognition time of the two-level decoding algorithm

is still high, and many investigations are still needed to

improve its performance. This can be performed by using

a lexicon tree instead of a flat lexicon, or by introducing

an estimation of the character duration on the decoding

step. The simultaneous decoding of all stream character

HMM in the first step of the two-level can also reduce the

computational cost.

Table V
WORD RECOGNITION TIME (IN SECOND) WITH RESPECT TO THE

NUMBER OF STREAMS K AND THE LEXICON SIZE V

Two-level HMM-recombination
V= 100 1000 1600 100 1000 1600

K=2 4.2 5 7.5 1.2 13.2 23.8
K=3 9.4 10.1 13.4 15.2 162.8 298.6
K=4 10.9 12 17.5 182.4 1836 3283.2

VI. CONCLUSION

This paper has focused on the optimization of the com-

putational efficiency of a multi-stream handwritten word

recognition system. Two decoding strategies are compared

and experimental results show that the multi-stream two-

level decoding algorithm allows to speed up significantly

the recognition process while maintaining the recognition

accuracy. Consequently, it is now possible to combine many

feature streams when dealing with large lexicons. Future

works will focus on the improvement of the computational

efficiency of the two-level algorithm as described in the

previous section. We are also interested in combining other

kinds of features providing more complementary informa-

tion to further improve the results using a N-streams ap-

proach. Finally, we plan to exploit the multi-stream paradigm

to combine a large number of HMMs resulting from Boost-

ing/Bagging ensemble methods.
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