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Abstract—A shape descriptor combining the histogram of
the Radon transform, the logarithmic-scale histogram, and
the phase-only correlation function is proposed. Applying a
logarithmic-scale to the Radon transform, the shape scaling
and rotation become two-dimensional translation in our de-
scriptor without any normalization. The geometric invariance
to translation, when we match two shapes, are kept using the
phase-only correlation function. In addition, we can determine
with this function the rotation angle and the scale parameter
between two shapes. Our descriptor is robust to shape occlusion
and noise also.

Keywords-The Radon transform; logarithmic scale; his-
togram; phase-only correlation;

I. INTRODUCTION

Shape description plays an important role in document
analysis for character, symbol or logo recognition. Suitable
shape descriptors should have invariant properties to geo-
metric transformations (translation, rotation, and scaling),
robustness to shape occlusion and noise, high recognition
performance, and high processing speed. Many approaches
have been proposed in the literature. D. Zhang and G. Lu
[1] propose a method using the Fourier transform called the
generic Fourier descriptor (GFD). The GFD is invariant to-
ward shape rotation. The shape translation is normalized by a
shape centroid shifted to the origin. The shape scaling is nor-
malized using a magnitude control with the area of shapes.
Subsequently, Q. Chen et al. [2] propose a method using the
Fourier-Mellin transform (FMT). It is an enhancement of the
Fourier transform using the log-polar mapping. The FMT
is invariant toward such geometric transformations without
any normalization. Moreover, a compact descriptor using
the Radon transform called the R-transform is proposed by
S. Tabbone et al [3]. The R-transform is invariant toward
shape translation and rotation, however it needs a scaling
normalization by a magnitude control. These normalizations
are weak for shape occlusion and noise.

The histogram of Radon transform (HRT) proposed re-
cently by S. Tabbone et al.[4] is a useful descriptor for shape
retrieval. The HRT descriptor uses the Radon transform,
which is efficient to the dominant lines in an image, and
provides a 2D histogram representing the shape length at
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Figure 1. (a) Original image ”IAPR.” (b) Geometric transformations with
translation, rotation, and scaling. (c) Shape occlusion: the area of 30% is
occluded. (d) salt and pepper noise: 5% of the pixels flipped by the noise.
(e)-(h) are the case of ”IEEE.”

each orientation. It is robust to the shape translation and
rotation. In [4], the Radon image and the histogram are
normalized with the area of shapes to achieve its scaling
invariance. Another advantage of this descriptor is the com-
pactness compared to other well know descriptors. However,
if the original image has any occlusion or any noise, the
area of shapes for the normalization is changed and affects
negatively.

In this paper, we propose an extension of HRT descriptor
combining the logarithmic conversion and the phase-only
correlation function without any normalizations (LHRT).
Applying the logarithmic conversion to the Radon transform,
the shape scaling and the shape rotation become a two-
dimensional translation in our descriptor. The geometric
invariance to translation kept using the phase-only corre-
lation function [5], which permits to recover the rotation
angle and the scaling parameter. Our method does not need
any normalization with the area of shapes. Consequently,
the LHRT is more robust to the shape occlusion and the
noise. Moreover, our descriptor can reduce the noise so
that the noise-band is separated from the shape component
in our descriptor. Excluding the noise-band provides better
performances. In Section II, we recall the classical HRT
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Figure 2. The Radon image of ”IAPR” and ”IEEE.”

descriptor. After, we describe our method in Section III.
Experimental results are shown in Section IV, and we draw
conclusions in Section V.

II. HRT DESCRIPTOR

Let f(x, y) be an original image of binary shape. It is
described as:

f(x, y) =
{

1 if f (x , y) ∈ X
0 otherwise, (1)

where X is the domain of the binary shape. The Radon
transform is defined as:

Rf (θ, ρ) =
∫ ∫

f(x, y)δ(x cos θ + y sin θ − ρ)dxdy, (2)

where δ(·) is the Dirac delta-function (δ(x) = 1 if x = 0
and 0 elsewhere); θ ∈ [0, π) and ρ ∈ [−A/2, A/2]; A
is the size of the image diagonal. In other words, the
Radon transform is the integral of f over the line L(ρ,θ)

defined by ρ = x cos θ + y sin θ. The Radon images of
Figs.1.a and 1.e are shown in Fig.2. In the case of geometric
transformations as Fig.1, the shape translation becomes a
sinusoidal shift relative to the radial ρ; the shape rotation
becomes a translation relative to the angle θ horizontally; a
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Figure 3. The logarithmic-scale histogram of ”IAPR” and ”IEEE.”

shape scaling becomes a 1-D scaling relative to the radial ρ
vertically (see Figs.2.a and 4.a).

The HRT descriptor is defined as a matrix of frequencies
computed on the Radon image aggregated by the angle
parameter of the Radon transform. The HRT descriptor
D(θ, y) of Ṙf (θ, ρ) for each orientation θ is:

D(θ, y) = H(Ṙf (θ, ·))(y), (3)

where H(f)(y) is a histogram of f as:

H(f)(y) =
#{x ∈ X|y = f(x)}

|X|
, (4)

where # is the cardinality of a set, and |X| means the area
of shapes. The histogram need a normalization by |X| for
the scale invariance. Moreover, Ṙf (ρ, θ) is:

Ṙf (θ, ρ) =
Rf (θ, ρ)√

|X|
, (5)

it also needs a normalization by |X| for the scale invariance.
The area of shapes |X| can be calculated as:

|X| =
∫

Rf (θ, ρ)dρ (6)

using any θ. The HRT descriptor is invariant toward the
shape translation (see [4]). The shape rotation becomes a
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Figure 4. (a) The Radon image of Fig.1.b and (b) the logarithmic-scale
histogram.

translation relative to the angle θ. To match two images, a
rotation invariant measure based on Euclidean distance ||·||2
is applied as:

Sim(DA(θ, y), DB(θ, y)) = (7)
min

α∈[0,π)
||DA(θ, y) − DB(θ, y)||2.

We can remark that in the HRT descriptor if the shape
has any occlusion or any noise, these normalizations with
the area of shapes affect the whole Radon domain and the
whole histogram, negatively. In the next section we propose
an extension to solve this drawback.

III. PROPOSED SCHEME

First, we calculate the Radon transform of an original bi-
nary image f(x, y) with Eq.(2). After, we apply a logarithm
conversion to the Radon image as:

Řf (θ, ρ) = lnRf (θ, ρ). (8)

Finally, the logarithmic-scale histogram of Radon trans-
form (LHRT) is calculated as:

D(θ, y) = H(Řf (θ, ·))(y), (9)

Rotation angle

S
c
a

lin
g

 m
a

g
n

if
ic

a
ti
o

n
 (

L
o

g
 s

c
a

le
)

 

 

−80 −60 −40 −20 0 20 40 60 80

−3

−2

−1

0

1

2

3
0

0.05

0.1

0.15

0.2

(a)

Rotation angle

S
c
a

lin
g

 m
a

g
n

if
ic

a
ti
o

n
 (

L
o

g
 s

c
a

le
)

 

 

−80 −60 −40 −20 0 20 40 60 80

−3

−2

−1

0

1

2

3
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(b)

Figure 5. (a) The phase-only correlation with Figs.1.a and 1.b; (b) the
case with Figs.1.a and 1.e.

where
H(f)(y) = #{x ∈ X|y = f(x)}. (10)

In our histogram, we do not normalize with the area of
shapes |X| (see Eq.(4)). The LHRT descriptors of Figs.1.a
and 1.e are shown in Fig.3.

When the shape in f is scaled by α factor, the Radon
image is scaled by α relative to the radius parameter ρ also,
that is:

Rg(θ, ρ) = αRf (θ, ρ/α), (11)

where Rf (θ, ρ) is for the original shape, and Rg(θ, ρ/α) is
for the scaled shape. Subsequently,

Řg(θ, ρ) = lnRf (θ, ρ/α) + lnα

Řg(θ, ρ) = Řf (θ, ρ/α) + lnα. (12)

Consequently, LHRT descriptor is given by:

Dg(θ, y) = αDf (θ, y − lnα). (13)

The shape scaling becomes a translation relative to the coor-
dinate y (a vertical translation). Moreover, the shape rotation
becomes, as for the HRT descriptor (see [4]), a translation
relative to the θ coordinate (a horizontal translation). The
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Figure 6. The UMD logo dataset.

descriptor is invariant toward the shape translation as the
HRT descriptor does.

The Radon transform of Fig.1.b is defined Fig.4.a, and
its LHRT descriptor in Fig.4.b. We can remark that the
differences between the two shapes (Figs.1.a and 1.b) are
−42◦ degree clockwise rotation and scaling by 0.87. There-
fore, the corresponding Radon image of Fig.1.b is translated
horizontally −42◦ and expanded vertically by 0.87 (see
Figs.2.a and 4.a). However, our descriptor (Fig.4.b) is merely
translated in both horizontal and vertical directions (42◦ in
the angle coordinate horizontally, and −0.15 = ln 0.87 in
the level coordinate vertically; see Figs.3.a and 4.b).

To match two images, we apply the phase-only correlation
function (POC) [5] as:

C(θ, y) = F−1

{
G1(u, v)G∗

2(u, v)
|G1(u, v)G∗

2(u, v)|

}
, (14)

where G(u, v) is a Fourier transform of D(θ, y), G∗ is
the complex conjugate of G, and F−1 means the inverse
Fourier transform. The matching score between two images
is defined as the maximum value in C(θ, y). When the
two shapes are same, there is a sharp peak in the POC
(see Fig.5.a), and the matching score is relatively high
(0.24 in this example). Moreover, the peak position denotes
the rotation angle (clockwise −42◦ degree) and scaling
magnification (exp−0.15 = 0.86). When the two shapes
are different, POC function is fuzzy (see Fig.5.b) and the
matching score is low (0.04 in this case).

IV. EXPERIMENTAL RESULTS

Performances of our method have been evaluated using
a trademark dataset provided by the Epeires project1. Our
dataset (see Fig.6) is composed of 32 categories, and each
category has 11 shapes geometrically transformed (352 logos
in total).

We create 3 datasets (a geometric transformed dataset;
a geometric transformed and occluded dataset; a geometric
transformed and noisy dataset). Each shape is matched
against all the other shapes, so that 61, 776 comparisons

1http://www.epeires.org
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Figure 7. Precision recall curves on the geometric transformed dataset.
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Figure 8. Precision recall curves on the geometric transformed and
occluded dataset. The area of 30% is occluded.

are made in each dataset. Each shape is translated, rotated,
and scaled randomly. For the occlusion, the area of 30% is
reasonably occluded. In the noisy dataset, we add ”salt &
pepper” noise; 5% of the pixels flipped by the noise.

Our method (LHRT) is compared with the generic Fourier
descriptor (GFD) [1], the Fourier-Mellin transform (FMT)
[2], the R-transform [3], and the histogram of Radon trans-
form (HRT) [4].

The performances of these methods are evaluated using
the precision-recall curves defined as:

Precision =
|Relevant images ∩ Retrieved images|

|Retrieved images|

Recall =
|Relevant images ∩ Retrieved images|

|Relevant images|
,

(15)

where | · | means the number of images. The precision and
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Figure 9. Precision recall curves on the geometric transformed and noisy
dataset. The ”salt & pepper” noise is added, and 5% of the pixels flipped
by the noise.

the recall are inversely related each other. However, the
descriptor whose precision and recall are both higher is a
better one.

Fig.7 shows the precision recall curves on the geomet-
ric transformed dataset. Our method (LHRT), HRT, R-
transform, and FMT have a nearly perfect performance, so
that it is observed that they are robust to the geometric
transformations. However, the performance of GFD is poor
for the geometric transformations.

In the case of occlusion, these performances are shown as
Fig.8. Our method (LHRT) and the FMT have comparable
and good performance; our method is better than the FMT.
The HRT has the normalization with |X| in Eq.(4), and
the normalization decreases its performance. Our proposi-
tion without the normalization improves the performances
remarkably.

With the noisy dataset, as Fig.9, our method (LHRT)
is the better. The performance of HRT decreases by its
normalization. Our proposition without the normalization
also improves the performance remarkably. Moreover, our
descriptor can reduce its noise so that the noise-band is sep-
arated from the shape component (see Fig.10.a). Exclusion
of the noise-band (the log-scale level is under 3.0) provides
the better performance (LHRT in Fig.9). The FMT also can
execute noise reduction (exclusion of the noise-band, its log-
scale frequency is over 4.5), however our performance is
better than the FMT.

V. CONCLUSION

Applying the logarithmic-scale to the HRT, the shape scal-
ing and rotation are projected into two-dimensional transla-
tion. Therefore, the geometric invariance pattern matching
can be executed using the phase-only correlation function,
and we can detect the rotation angle and the scaling mag-
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Figure 10. (a) The LHRT descriptor of noisy image and (b) our noise
reduction.

nification. Our descriptor is robust to shape occlusion and
noise without any normalization. Moreover, we can reduce
noise excluding the noise-band.
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