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Abstract—In this paper, we propose a novel algorithm, based 
on stroke components and descriptive Gabor filters, to detect 
text regions in natural scene images. Text characters and 
strings are constructed by stroke components as basic units. 
Gabor filters are used to describe and analyze the stroke 
components in text characters or strings. We define a 
suitability measurement to analyze the confidence of Gabor 
filters in describing stroke component and the suitability of 
Gabor filters on an image window. From the training set, we 
compute a set of Gabor filters that can describe principle 
stroke components of text by their parameters. Then a ࡷ -
means algorithm is applied to cluster the descriptive Gabor 
filters. The clustering centers are defined as Stroke Gabor 
Words (SGWs) to provide a universal description of stroke 
components. By suitability evaluation on positive and negative 
training samples respectively, each SGW generates a pair of 
characteristic distributions of suitability measurements. On a 
testing natural scene image, heuristic layout analysis is applied 
first to extract candidate image windows. Then we compute the 
principle SGWs for each image window to describe its 
principle stroke components. Characteristic distributions 
generated by principle SGWs are used to classify text or non-
text windows. Experimental results on benchmark datasets 
demonstrate that our algorithm can handle complex 
backgrounds and variant text patterns (font, color, scale, etc.). 

Keywords- Gabor Filter; Stroke Component; Suitability 
Measurement; Stroke Gabor Words; SGW Characteristic 
Distributions 

I.  INTRODUCTION 
Camera captured text information in natural scene images 

can serve as indicative marks in many image-based 
applications such as assistive navigation, auxiliary reading, 
image retrieval, scene understanding, etc. Different from the 
scanned document images [1, 11], extracting text from 
natural scene images is a challenging problem because of 
complex backgrounds and large variations of text patterns 
such as font, color, scale, and orientation. 

Many optical-character-recognition (OCR) systems, 
either open source or commercial software, have been 
developed to recognize text by taking character corners or 
junctions as feature points of learning and matching on 
scanned documents. But these OCR systems cannot 
automatically filter out variant background outliers in natural 
scene images. When a raw natural scene image is input into 
an OCR system, the text recognition rate is often very low. 
Therefore, to extract text from natural scene images, text 

detection is an essential step to compute the image sub-
regions containing text characters or strings. 

Many rule-based algorithms have been proposed for text 
detection [6, 12, 18]. They extracted text characters and 
strings by using gradient-based and color-based local 
features, including minimum size, aspect ratio, edge point 
density, gradient distribution, color uniformity and stroke 
width consistency. But these features are sensitive to variant 
text patterns and background outliers that resemble text 
characters. Many researchers applied a machine learning 
model to solve the problems of text detection. Chen et al. [3] 
developed an Adaboost learning framework by using 
selected Haar features, joint histogram of intensity and 
intensity gradient, and distribution of edge points as features 
to train classifiers. Pan et al. [16] extracted segments of 
character boundaries as features and employed a K-SVD 
based learning model to detect text. Hu et al. [7] presented 
an adaptive Frechet Kernel based support vector machine 
(SVM) for text detection. Kumar et al. [9] established a set 
of globally matched wavelet filters as feature descriptors and 
used SVM and Fisher classifier to classify image windows as 
text or non-text. Generally, the patterns of tangible objects, 
such as face, human body and car, are stable for learning-
based object detection. The dissimilarity between different 
training samples and testing samples is small enough or can 
be lowered by alignment and normalization. However these 
benefits are not applicable to text in natural scene images. 

As basic element of text character and text string, stroke 
provides robust features for text detection in natural scene 
images. Text can be modeled as a combination of stroke 
components with a variety of orientations, and features of 
text can be extracted from combinations and distributions of 
the stroke components. In this paper, a novel algorithm is 
proposed to detect text regions by using Gabor filter 
responses to model the stroke components of text. It is able 
to handle complex backgrounds and variant text patterns. 
The contributions of this paper are: (1) A suitability 
measurement of Gabor filter to measure its confidence in 
stroke component description and its suitability for an image 
window. (2) Stroke Gabor Words for universal descriptions 
of stroke components. (3) A classification algorithm based 
on the characteristic distribution of suitability measurements 
generated by principle SGWs. The flowchart of our 
algorithm is presented in Fig. 1. In this paper, we use image 
window, a rectangle image sub-region with fixed aspect ratio, 
as a basic processing cell. 
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Figure 1. The flowchart of our algorithm. 

II. DESCRITPIVE GABOR FILTERS 

A. Gabor filter Descriptions of stroke components 
We use Gabor filters to describe the stroke components in 

text characters or strings. Gabor filter was widely used for 
texture analysis and image representation [10, 20]. Gabor 
filter was also employed for segmentation in the document 
image [8, 17, 19]. In [4], Gabor filter is applied to obtain 
local features for text recognition after text detection and 
affine rectification. In [17], Gabor filter is used for script 
identification. A 2-D Gabor filter is a Gaussian kernel 
modulated by a sinusoidal carrier wave, as in (1) and (2). It 
gives responses to structure of line segment in scene images. ݃ሺݔ, ;ݕ ,ߣ ,ߠ ߰, ,ߪ ሻߛ            ൌ         exp ቆെ ᇱଶݔ  ଶߪᇱଶ2ݕଶߛ ቇ cos ቆ2ߨ ߣᇱݔ  ߰ቇ 

 
(1) 

where ݔᇱ ൌ ߠݏܿݔ  ᇱݕ ߠ݊݅ݏݕ ൌ െߠ݊݅ݏݔ   (2) ߠݏܿݕ

A Gabor filter bank is built in accordance with the 5 
parameters ൏ ,ߣ ,ߠ ߰, ,ߪ ߛ  . Given an image window ݓሺݔ,  is obtained by convolution ݎ ሻ, Gabor filter responseݕ
with a Gabor filter ݃ from the filter bank. A Gabor filter ݃ 
can be used to describe a stroke component as long as it 
generates the maximum energy of response among all the 
Gabor filters in the bank. 

B. Suitability Measurement 
The stroke component can be approximately 

reconstructed by its descriptive Gabor filter, but there exists 
errors between Gabor filter description and actual stroke 
component in image. To model the confidence of Gabor 
filters in describing stroke component, we define a 
suitability measurement based on binary Gabor filter 
response map ீܤோሺݓሻ and binary stroke map ܤௌெሺݓሻ. The 
Gabor filter response map ீܤோሺݓሻ is obtained by inserting 
an additional parameter ݐ ሺ0  ݐ  1ሻ into the Gabor filter 
to binarize the Gabor filter response map ࢘, by (3). 

;࢝ோሺீܤ  ሻࢍ ൌ ሻ࢘ோሺீܤ ൌ  ൜1     ݂݅ ࢘  ݐ · ࢘ ݂݅    ௫0࢘ ൏ ݐ · ௫࢘  (3) 

where ࢘௫  represents the maximum value on the Gabor 
filter response map. Thus a Gabor filter ࢍ is denoted by a 
vector of the 6 parameters ߣۃ, ,ߠ ߰, ,ߪ ,ߛ  .(see Fig. 2(c-d)) ۄݐ
The stroke map ܤௌெሺ࢝ሻis obtained by labeling the pixels 
located in the torso of strokes. According to the definition in 
[6], stroke is a set of pixels in connecting paths of two edge 

pixels with approximately equal gradient magnitude and 
opposite gradient directions. On the basis of edge map and 
gradient map, we construct probe rays at each edge pixel 
along the gradient direction to find out the satisfied 
connecting paths. Then stroke map is obtained by assigning 
foreground value to pixels in these paths, as shown in 
Figure 2(b). 

The suitability measurement ܦ is defined as the pattern 
correlation between ீܤோሺ࢝;  .ሻ by (4)࢝ௌௐሺܤ ሻ andࢍ
;࢝ሺܦ  ሻࢍ ൌ 2 ൈ ;࢝ோሺீܤ & ሻ࢝ௌௐሺܤ| ;࢝ோሺீܤ||ሻࢍ |ሻࢍ  |ሻ࢝ௌௐሺܤ|  (4) 
 
where the |·| represents the number of pixels with value 1 in 
the binary map. ܦሺ࢝; ,ሻ is in the range ሾ0ࢍ 1ሿ. 

On a stroke component, ܦ  models the confidence of 
Gabor filters in stroke description. However, a text window 
usually includes a number of different stroke components. ܦሺ࢝;  for ࢍ ሻ is used to model suitability of Gabor filterࢍ
image window ࢝. A large ܦሺ࢝;  ሻ will be obtained as longࢍ
as Gabor filter ࢍ has high confidence in describing a stroke 
component with high frequency of occurrence in image 
window ࢝. This Gabor filter is said to be suitable for ࢝, and 
this stroke is defined as principle stroke component of ࢝. 
Text detection can be transformed into detection of principle 
stroke components. 

 
Figure 2. (a) Original image; (b) binary stroke map; (c) three Gabor filters 
marked with the parameter vectors and the corresponding binary Gabor 
filter response maps to display stroke components; (d) ordering of Gabor 
filter parameters listed in (c). 

III. STROKE GABOR WORDS 

A. Training Set 
From natural scene images with text regions manually 

labeled, we generate positive training samples by slicing 
each ground truth region vertically into overlapped windows 
with width-to-height ratio 2:1, as shown in Fig. 3(a). Each 
sample contains text in regular print patterns and they are 
normalized into fixed size, height 48 and width 96 pixels. 
From the same natural scene images, we generate negative 
training samples by the bounding boxes of non-text object 
boundaries. In addition, we take 1402 images covering 
multiple background scenes where text information might 
exist. But they do not include any text information. 
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Negative samples are generated by randomly cutting out 
image windows with height 48 and width 96 pixels. The 
training set contains 2711 positive samples and 9208 
negative samples in total. To ensure that maximum Gabor 
responses are generated at stroke components, all positive 
samples of this training set have higher stroke intensity than 
background intensity.  

B. Stroke Gabor Words 
We build a set of Gabor filters for universal description 

of stroke components from the training set. At first, the 
descriptive Gabor filters of principle stroke components are 
computed for each training sample ࢝ . Principle stroke 
components serve as main bodies of text characters in an 
image window, so they are described by Gabor filters whose 
responses are compatible with stroke map of this window 
(see Fig. 2(c)). From the Gabor filter bank, we find out a set 
of Gabor filters generating maximum values of suitability 
measurement. In (5), the most suitable Gabor filter כࢍ 
describes the most frequent principle stroke component in 
window ࢝. Then we build an ordered list of Gabor filters 
from the text window according to the suitability 
measurements. A threshold ܶ  is set to calculate the 
descriptive Gabor filters of principle stroke components that 
construct text in ࢝ by (6).  כࢍ ൌ argmaxࢍ ;࢝ሺܦ  ሻࢍ

 
ܩ (5) ൌ ൛ࢍหܦሺ࢝; ;࢝ሺܦ/ሻࢍ ሻכࢍ  ܶൟ (6) 

We combine the descriptive Gabor filters from all 
positive samples, and weighted ܭ -means is applied to 
cluster the parameter vectors of descriptive Gabor filters. 
The clustering centers are defined as Stroke Gabor Words 
(SGWs) denoted by  ܵ . Fig. 3(b) presents some example 
SGWs. The SGWs are Gabor filters serving as stroke basis 
for universal description of principle stroke components in 
the positive training samples.  

 
Figure 3. (a) Examples of text windows from positive training samples; (b)  
examples of SGWs with parameter lists on the right. 

Based on the suitability measurements, an image 
window can be mapped to an ordered list of SGWs. We can 
find out a subset of SGWs that describes the stroke 
components in the image window. They are defined as 
principle SGWs of image window ࢚࢝ , which have larger 

suitable measurements than the other SGWs, and we 
calculate them by (7) and (8). כ࢙ ൌ ;࢚࢝ሺܦ࢙ܠ܉ܕܚ܉  ሻ (7)࢙

  ௧ܵ ൌ ሼீܦ|࢙ሺ࢚࢝; ;࢚࢝ሺீܦ/ሻ࢙ ሻכ࢙  ௗܶሽ (8) 

where ௧ܵ  is the set of principle SGWs for ࢚࢝ and כ࢙ is the 
most suitable SGW for ࢚࢝ . The set of principle SGWs 
compose a subset of the ܭ SGWs. In our experiments, we 
set ܶ ൌ ܭ ,0.95 ൌ 25, and ௗܶ ൌ 0.975 to achieve the best 
performance. The principle SGWs and corresponding 
suitability measurements are features of an image window, 
which are used to classify it as either a text or non-text 
window. 

C. Classification Algorithm Based on Principle SGWs 
Text region detection requires localization to obtain 

preliminary image windows and classification to determine 
text windows and non-text windows. Heuristic layout 
analysis is performed to partition the scene image into a set 
of candidate image windows. It is based on the magnitude 
gradient difference in Laplacian map [18] and the adjacent 
character grouping to find out all possible fragments of text 
strings, which are three or more edge boundaries with 
approximately equal heights, distances and horizontal 
alignment [21]. 

Then we propose a novel classification algorithm based 
on distribution of suitability measurements of each SGW in 
training set to classify the candidate image windows as 
either text or non-text windows. Each SGW is able to give a 
vote of image window classification according to statistics 
of its suitability measurements on training samples. On the 
positive samples, most values of SGW suitability 
measurements are distributed in the range (0.55, 0.7). 
Inspired by the Rayleigh nature of Gabor filter outputs in 
the texture analysis [2], we employ a mirror reversed 
Rayleigh distribution to model the statistical results of 
suitability measurements from positive samples. 

ሻܦሺ࢙ܲ ൌ 1 െ ଶߪܦ exp ቆെ ሺ1 െ ଶߪሻଶ2ܦ ቇ (9) 

where ܰ is the size of positive training samples and ߪ is a 
parameter whose maximum likelihood is ߪො ൌ ටሺ1 2 ܰ⁄ ሻ ∑ ሺ1 െ ሻଶேುୀଵܦ . On the negative samples, 

suitability measurements are irregularly distributed in the 
range [0, 1] because the negative training samples contains 
multiple patterns without any constraints. Thus we use the 
Gaussian distribution to model the statistical results of 
suitability measurements from negative samples. 

ሻܦሺ࢙ܰ ൌ 1ඥ2ߪߨேଶ exp ቆെ ሺܦ െ ேଶߪேሻଶ2ߤ ቇ 
 
(10) 

where ߤே  and ߪே  are mean and variance which can be 
estimated by maximum likelihood. As shown in Fig. 4, ࢙ܲሺܦሻ and ࢙ܰሺܦሻ are characteristic distributions of the SGW. 
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They indicate the probability that an image window will be 
classified as text window or non-text window by SGW ࢙.  

If an image window ࢚࢝  contains text information, its 
principle SGWs give positive votes. The corresponding 
suitability measurements should be mapped to high 
probability in the mirror reversed Rayleigh distributions and 
to low probability in the Gaussian distributions. If ௦ܲ൫ܦሺݓ௧; ሻ൯ݏ  ߤሺ࢙ܲ െ ሻߪ0.3 where ߤ ൌ 1 െ  ߪ1.253
or ௦ܰ൫ܦሺݓ௧; ሻ൯ݏ  ேߤሺ࢙ܰ േ ேሻߪ , the principle SGW ݏ 
gives a positive vote value 1, otherwise it gives a negative 
vote value -1. A weighted sum of the votes of all principle 
SGWs is calculated to make image window classification by 
ሻ࢚࢝ሺܪ  .(11) ൌ ݊݃ݏ ൭ ߚ ܸ ൱ (11) 

where ܸ  denotes the vote values and ߚ ൌ ݏ ∑ ⁄ௌא௦ݏ  
denotes the weights. 

 
Figure 4. Three SGWs and corresponding characteristic distributions. The 
mirror reversed Rayleigh distribution on positive training samples is 
marked in blue and the Gaussian distribution on negative training samples 
is marked in red. 

Background outliers such as bricks, window grids or 
some stripe texture are probably classified as text regions 
because they also generate similar SGW suitability 
measurements as text characters. To filter out the false 
positive detection, we employ the number of dominant 
colors and foreground connected components in an image 
window to make further classification. Color reduction 
based on [15] is performed to group the pixels with similar 
colors together, and the color corresponding to the most 
pixels is set as background color. In general, a true positive 
text window contains exactly two colors including 
background and foreground characters, and each character 
forms a connected component. In our algorithm, we define 
that text window after color reduction contains no less than 
2 and no more than 4 colors, and the number of foreground 
connected components should be greater than 1 and smaller 
than 7. When a group of neighboring image windows had 

been classified as text windows, they would be merged into 
text regions as results of text detection.   

IV. EXPERIMENTS 

A. Datasets 
We evaluate the proposed algorithm on two datasets. The 

first one is ICDAR 2003 Robust Reading Dataset. It 
contains 509 images in total, in which the first 258 images 
are used for training and the rest 251 images are used for 
testing. The image sizes range from 640×480 to 1600×1200. 
There are 2258 ground truth text regions in total. The 
second dataset is provided by [6]. There are 307 images 
containing 1981 ground truth text regions in total. The 
image sizes range from 1024×764 to 1024×1360. The 
natural scene images in this dataset present a more 
challenging background. The height of 901 ground truth text 
regions is less than 20 pixels.  

B. Results and Discussions 
We evaluate the performance of our algorithm by 

comparing the detected text regions with the ground truth 
text regions. We define “precision” as the ratio of area of 
the true positive extracted text regions to area of the 
detected regions, and “recall” as the ratio of area of the true 
positive extracted text regions to area of the ground truth 
regions. Here area means the number of pixels in the image 
region. “f-measure” is defined as the combination of 
precision and the recall by the harmonic mean. 

On the Robust Reading Dataset, the testing images are 
used to evaluate the performance of our algorithm. Since 
adjacent character grouping in the process of layout analysis 
cannot cover text strings with less than three character 
members, we eliminate images whose ground truth text 
regions contain less than three text characters. Thus 236 
testing images are chosen for performance evaluation. To 
keep consistent with higher stroke intensity than 
background in training samples, two rounds of text 
detections are performed for each testing image based on 
gray image and inverse gray image respectively. The better 
result is used to evaluate algorithm performance. The 
evaluation results are calculated from average measures of 
all testing images, precision 0.64, recall 0.76, and f-measure 
0.68. By comparison with the state-of-the-art algorithms, 
our method achieves the best performance of recall and f-
measure in this experiment. Some examples of detected text 
regions are shown in Fig. 5. 
 

 
Figure 5. Some example results of text string detection on the Robust 
Reading Dataset. The detected regions are marked in cyan. 
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On the other dataset, text windows obtained from the 
ground truth regions of the first 150 images are added into 
the training set as positive samples. The text detection is 
then performed on the whole 307 images of this dataset. By 
using the same measures, we obtain precision 0.49, recall 
0.60, and f-measure 0.42. Our results are close to precision 
0.54, recall 0.42, and f-measure 0.47 presented in [6]. To 
improve the precision, a more robust model of SGW 
evaluations on negative samples should be developed to 
handle the complex background outliers that resemble text 
structure in the future, rather than a naive normal 
distribution. Fig. 6 presents some examples of detected text 
regions. 

 
Figure 6. Some example results of text detection on the Dataset provided 
by [6]. The detected regions are marked in cyan. 

C. Conclusion and future work 
We have presented a novel algorithm to detect text 

regions in natural scene images. First, we use Gabor filter to 
describe stroke component and define a suitability 
measurement to model the confidence of Gabor filter 
description of strokes. Second, we carried out the statistical 
analysis on the stroke components of text from training sets 
to obtain SGWs, which are used as the universal description 
of principle stroke components. Third, characteristic 
distributions are established for each SGW by using the 
Rayleigh model to describe suitability statistics on positive 
training samples and the Gaussian model to describe 
suitability statistics on negative training samples. Image 
window classification is performed based on characteristic 
distributions of the principle SGWs. The experimental 
results demonstrated that our algorithm performed well on 
backgrounds and variant text patterns, and outperforms the 
state of the art algorithms for text extraction from natural 
scene images. Our SGW model demonstrates the statistical 
stationarity of the stroke components of text. In the future, 
we will develop more effective suitability measurements 
and more robust models to describe the SGW suitability 
statistics on the negative training samples. Furthermore, we 
will extend our algorithm to detect text with non-horizontal 
orientations or on deformed surfaces.  
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