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Abstract—This paper presents a new method to split an
image into chromatic and achromatic zones. The proposed
algorithm is dedicated to document images. It is robust to the
color noise introduced by scanners and image compression.
It is also parameter-free since it automatically adapts to the
image content.
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I. INTRODUCTION

In document images, color pixels can not be treated in

the same way as the gray-scale ones. Indeed, it would be

meaningless to consider the hue in a gray-scale image. As

most of document images consist of some color areas (e.g.
figures) and some gray-scale ones (e.g. black and white text),

it is often necessary to separate color pixels from gray-scale

ones to process them differently. Such an issue seems to be

obvious. However, digitized images are usually altered by

color noise (see figure 1) introduced by scanners, especially

when they are incorrectly set, and by image compression.

This noise consists in chromatic pixels inside grey-scale

areas.
We call a chromatic pixel any pixel having a defined hue

(red, green, blue, yellow, etc). Otherwise, a pixel is called

achromatic (shades of gray, including black and white).

Figure 1. Samples of the color noise

The chromatic / achromatic split has several further ap-

plications. The most immediate one is to clean the image

and get rid of the noise. Thus, our method’s output would

enhance quantization algorithms. We can also extract rel-

evant features based on the chromatic / achromatic sepa-

ration to classify document images [1]. Furthermore, it is

a valuable preprocessing step for OCR (Optical Character

Recognition), coding and image compression.

Distinguishing between true colors present in the original

resource and noise colors introduced by the digitization

process is a complicated task. Isolated chromatic zones can

be noise as well as a small color object (e.g.: a bullet at

the beginning of a line, such as in figure 1). Furthermore,

some color noise, in low resolution and dithered images,

makes it impossible to guess the original color in the source

document and even to know whether the zone is supposed

to be perceived as chromatic or achromatic. Figure 2, where

the Nyquist-Shannon sampling theorem was not respected,

shows an example of this kind of noise.

Figure 2. Uninterpretable multicolored dithering

Very few works dealing with chromatic / achromatic

separation exist in the literature. In [2], the separation

is simply carried out by thresholding the Saturation [3]

channel. Such a method is not suited to noisy images since it

does not consider the color noise. Karatzas et al. [4] perform

the chromatic / achromatic separation in web images based

on the human perceptual model. This method consists in

thresholding the HSV colors based on human perception.

However, web images do not include the same type of noise

as digitized images. Thus, the color noise cannot be removed

by such a method. Several researchers [5], [6] have been

interested in distortions caused by digitization in gray-scale

document images but color noise has not been handled yet.

This paper proposes an algorithm that separates chromatic

zones from achromatic ones resulting in a binary mask

telling whether any pixel is chromatic or not. A statistical

measure that estimates the stroke’s thickness in the document
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image is proposed. It allows the system to be completely

automated and parameter-free.

The chromatic area detection is based on a new measure

called pseudo-saturation and a series of morphological and

smoothing operations.

All the steps are based on pixel-based approaches since,

unlike structure-based algorithms, pixel-based methods do

not require any document model or any a priori information

on the document class.

II. STROKE THICKNESS ESTIMATION

Most of the document image processing methods de-

pend on a resolution related parameter (e.g.: width of a

structuring element, size of a convolution matrix, etc.). To

determine such values, it would be rather futile to lean on the

digitization resolution. Indeed even if all documents were

digitized in the same resolution (some providers proclaim

that 300dpi is universally suitable!), each document has its

own typographic characteristics. Modern letters and invoices

are usually composed with 10 or 12 points fonts but adver-

tisements, flyers and journals use fancy typography. Given

a specific size, the strokes of a font may have variable

thickness depending on the typeface appearance (see fig. 3).

Figure 3. Two fonts with the same size but with different stroke thickness.

In order to ensure that the algorithms presented in this

paper will be free of a “resolution” parameter, we will base

all our metrics on an estimation of the font’s stroke thick-

ness. We will restrain from binarizing the image because a

high quality binarization is time-consuming.

A quick and easy way to estimate the strokes’ width

and height without binarizing the image is to compute the

autocorrelation of the image along the horizontal and vertical

axes. The estimation would obviously be more accurate if

we determined the main orientation of the strokes but this

would cost too much time. This is a statistical and global

measure. Its purpose is not to describe precisely a font but

to indicate the order of magnitude of the main text’s strokes

thickness.

Let Th(I, δ) be the translation of the gray-scale image I
(defined on the plane Ω) of δ pixels along the horizontal

axis. We define the sequence
(Dh(I)n

)
n

with:

Dh(I)0 = 0
Dh(I)n =

∑
(x,y)∈Ω ‖I(x, y)− Th(I, n)(x, y)‖ (1)

The sequence
(Dh(I)n

)
n

is asymptotic. To estimate the

mean stroke width Sw of an image, we compute the se-

quence until n = nm, when its growth rate becomes lower

than 10%. Then, we obtain Sw = nm

The computation of the mean strokes’ height Sh goes the

same with the vertical translation Tv(I, δ) and the sequence

(Dv(I)n)n.

We tested this algorithm on various documents (see fig. 4)

and we measured the strokes’ width and height manually.

The strokes’ thickness range was from 2 to 10 pixels

inclusive. The mean error between Sw and the measures

was 1.25 pixels, which is quite good since the images are

never binarized in the process. Due to prominence of vertical

strokes in the writing, the mean error between Sh and the

measures was 1.75 pixels.

Figure 4. Samples of the images used to test the strokes’ thickness
estimation.

The presence of pictures naturally affects the measure-

ment but experiments have shown that the mean stroke

thickness is never modified by more than one pixel. In

an image with text in multiple fonts or sizes, the mean

strokes’ thickness is close to the thickness of the most

represented font. Small text has many horizontal (resp.

vertical) boundaries that respond well to the autocorrelation

and limit the effects of the presence of text in large fonts

(such as titles).

Since a stroke’s edge in a gray-scale image is nearly

always smoothed, it is impossible to precisely measure its

thickness. Therefore, having a mean error lower than 2 pixels

proves that our estimator is accurate enough.

In the following, as we do not know the orientation

of the document images, we will use the estimator St =
max(Sw,Sh).

III. CHROMATIC / ACHROMATIC DECOMPOSITION

This section aims to create a binary mask where each

entry indicates whether the corresponding pixel is chromatic

or not.

The algorithm encompasses three main steps: the compu-

tation of the pseudo-saturation image S∗, the coarse mask

MC generation and the final mask MF inference.

A. Computation of the pseudo-saturation

Chromatic / achromatic separation is usually achieved by

thresholding the saturation channel [2]: chromatic content is

generally highly saturated whereas achromatic pixels have

low values of saturation. However, the standard saturation

of dark pixels is disruptive since its computation involves

division by lightness which is nearly null. For instance,

figure 5.b shows black (achromatic) zones having greater

values of saturation than the green (chromatic) background.
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a. b. c. d.

Figure 5. a. Color image, b. Saturation image, c. Pseudo-saturation image,
d. Scale

For this reason, we introduce a new pseudo-saturation

measure, which is defined below, instead of the traditional

saturation. Let a color image I be defined in the RGB

representation system by:

I : Ω→ N3

p �→ (Rp, Gp, Bp)
(2)

The pseudo-saturation S∗ of I is defined by:

S∗(I) : Ω→ N
p �→ max(|Rp −Gp|, |Rp −Bp|, |Gp −Bp|)

(3)

The pseudo-saturation is valid on dark pixels (as well as

light ones) since its computation does not imply any division

(see Figure 5.c).

B. Coarse detection of chromatic zones

Whatever the saturation formula, we cannot get rid of

the color noise directly. Figure 6 represents the pseudo-

saturation output of a sample color image (blue handwritten

text on the top, black printed text below). It shows that it is

impossible to find an appropriate threshold that removes the

noise and detects chromatic regions at the same time.

a. b.

c. d.

Figure 6. a. I , b. S∗(I), c. S∗(I) thresholded at 25%, d. S∗(I)
thresholded at 40%

To get rid of the color noise, we operate a coarse detection

of the chromatic areas. Then, we refine the results by

localizing those zones accurately. Such a decomposition has

a practical purpose: it is possible to stop at the end of the

first step if we just want to know whether an image includes

chromatic (or achromatic) regions, which is time saving.

The output at this level will be the coarse mask MC . At

this stage, we aim to remove the color noise, even if the

localization is not precise.

We begin by reducing the image size using a Gaussian

re-sampling. The scale reduction smoothes the image; thus,

it eliminates some noise. Furthermore, processing a reduced

image is faster than handling the full-sized one. The scale

reduction factor is fixed to St (cf.section II). Such a value

achieves a reduction in the color noise without destroying

the small chromatic zones (such as text).

As the saturation noise is located next to black text pixels,

we apply a morphological color closing [7] of the darker

elements. This replaces the remaining chromatic noise with

regular text pixels without removing the truly chromatic

zones. Since the image size has already been normalized, the

size of the closing structural element can be common to all

images and is fixed to a low value, 3×3, to avoid information

loss. Furthermore, the saturation noise is connected to the

character boundaries [5]. Baird [8] asserts that noise is an

inverse exponential curve sharply increasing from the edge

of the contour. Therefore, a closing with a structural element

of radius 1, i.e. a 3×3 matrix, is enough to remove the noise.

We call the resulting image Ir.

The pseudo-saturation measure is computed over Ir (see

Figure 8.b). The image S∗(Ir) is then thresholded to create

the coarse mask MC . Only the pseudo-saturation values

above the threshold correspond to chromatic areas. The

pseudo-saturation threshold estimation is based on S∗(Ir)’s
histogram, mainly its first peak. Entirely chromatic images

have very few low values of pseudo-saturation (Figure 7.a).

Thus, if the first mode’s position is significantly greater than

zero the image is judged to be wholly chromatic and the

threshold is set to the minimal value. Similarly, if all the

histogram’s peaks are close to zero, the image is considered

to be entirely achromatic and the threshold is set to 100%

(Figure 7.b). If the two above conditions are not met, the

pseudo-saturation threshold is given by the position of the

local minimum following the first peak (Figure 7.c).

The mask MC displayed in figure 8.c shows that the

color noise is successfully removed. The localization of the

chromatic zones will be refined in the next section.

C. Accurate chromatic / achromatic split

Provided MC , we can now precisely extract the shapes

and create MF . This can only be done by using the full

scale image. Therefore, we will combine MC (Figure 8.c)

with a new mask called MA given by thresholding the full-

sized pseudo-saturation image (Figure 6.d). The thresholding

method is the same as explained in section III-B.
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Figure 7. Thresholding of a. a chromatic, b. an achromatic and c. a mixed
images

a. b. c.

Figure 8. Manuscript blue line atop black printed text. a. I , b. Ir , c. MC

The most intuitive combination method may be the logical

intersection of MC and MA. However, such an operation

fails to perform on images with a chromatic background (see

Figure 9). To overcome this problem, we propose to compute

a. b.

Figure 9. a. Green background image, b. Mask obtained by logical
intersection of MC and MA: approximately the same as MC

the final mask as the logical intersection of MC’s bounding

boxes [9] (in the original scale) and MA. The red boxes

in Figure 10.a represent the bounding boxes extracted from

MC ; Figure 10.b displays the mask MA and Figure 10.c

MF .

Figure 10. a. MC , b. MA, c. MF

D. Results

The algorithm has been tested on a database composed of

a large variety of digitized documents (magazines, news-

papers, map images, manuscripts, etc.). As we do not

have the electronic sources of images (and even then, the

registration step would have been problematic) we had to

label the 320 images manually. The testing database includes

approximately 30% images that are exceedingly noisy (such

as the ones in Figures 1 and 11).

The results will be displayed in terms of precision P and

recall R. The precision is defined by the intersection area of

the ground truth and the segmentation method chromatic

zones divided by the area of the segmentation method’s

zones. The recall is the ratio between the intersection area

and the ground truth area.

R =

⋂
area

ground−truth area P =

⋂
area

detected area
(4)

Our method’s results are compared with the ones given

by thresholding the saturation (in [2] the threshold is fixed

to 20%).

Table I shows that our method reaches an almost perfect

precision value. Indeed, it is designed to remove the color

noise and thereby the false detections. Both of the presented

methods reach good recall values; i.e. almost all the chro-

matic areas are correctly detected.

Table I
P /R RESULTS

Method R P
Kim 2009 [2] 93.26 70.03
Ouji 2011 91.54 99.88

Our engine has managed to remove all the color noise in

Figure 1. Figure 11 shows the final mask of another noisy

image.

The shape extraction is very accurate (see Figure 12.d).

Figure 12.b displays the final film of a sample image. The

zones that may appear grey in the film (because of the

scaling in the current document) correspond to a thin color

dithering, which is correctly extracted (see Figure 12.c).
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Figure 11. Sample result

Figure 12. a. Sample image, b. MF , c. Chromatic dithering, d. Chromatic
text.

IV. CONCLUSION

This paper presents a generic method to remove the color

noise so that the chromatic / achromatic split is achieved

successfully. The proposed approach is pixel based and

independent of the document image’s type; it does not

require any a priori information. It is also parameter-free

owing to the statistical measure of the strokes thickness.

A new measure of pseudo-saturation has been introduced

to detect chromatic areas efficiently. Gaussian scaling and

morphological closing have been used to get rid of the color

noise.

We held tests on a representative set of images coming

from various documents. The proposed method reaches very

satisfying results, especially very high precision values.

Comparisons with a baseline method confirm our method’s

effectiveness.
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