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Abstract—The Google Books corpus now counts over 15M
books spanning 7 centuries and countless languages. Tradi-
tional cataloguing at that scale is imprecise, and often fails
to identify more complex book-to-book relationships, such as
‘same text, different pagination’ or ‘partial overlap’. Our con-
tribution is a two-step technique for clustering books based on
content similarity (at both book and page level) and classifying
their relationships. We run this on our corpora consisting
of more than 15M books (5B pages). We first detect similar
books and similar pages within matching books, using hashing
techniques and judicious thresholds. We then combine those
features to identify the exact relationship between matching
books. In this paper, we describe the basic approach to making
the problem tractable, as well as the features and classifiers
that we used. We enumerate a small number of relationships
to qualify the link between scanned real-world books. Finally,
we provide precision and recall measurements of the classifier.

Keywords-Document similarity detection; relation classifica-
tion; min-hash; book clustering;

I. INTRODUCTION

The last decade has seen the development of multi-

ple mass digitization projects: Live Search Books, Internet

Archive, Google Books to name only a few. The number of

distinct books owned by libraries in the world is estimated to

be around 130 million [1] and a large fraction is becoming

available in digitized form. Because digital repositories

gather content from multiple libraries, we expect significant

overlap in the material scanned, even within collections of

the same library. Due to imperfections in cataloging and

metadata, detecting such overlap reliably is a very hard

problem [1]. Dealing with multiple sources of metadata for

better coverage only compounds this problem. Common is-

sues with metadata include inconsistent formating of author

and title field, incorrect data, confusion around multi-volume

books and multi-book volumes, typos, etc. We found that the

only truly reliable way to establish relationships between

two books is to compare them side by side. Unfortunately

due to the size of modern digital corpora, it is inconceivable

to be able to compare every pair of books, and even less

every pair of pages. To illustrate this point with a quick

back-of-the-envelope calculation, imagine if we ran all the

pairwise comparisons on the Google Books corpus. That

corpus contains more than 15 million books, with an average

of 330 pages per book. We could be comparing more than

5× 109 billion pages. Direct n2/2 comparison would yield

112.5× 1012 book pairs, and 12.5× 1018 page pairs. If we

could afford 1ms per comparison, it would take 3567 years

to compare all book pairs, and 777 million years for all page

pairs.

In this paper we describe the method we use to cluster a

corpus of more than 15M books, that relies on comparing

similar books, both the book and the page level to determine

book to book relations. This work has many practical appli-

cations. It can be used to improve metadata-based clustering

by providing an orthogonal signal for the comparison of two

books. Other applications include picking the best quality

scan out of an equivalence class of similar books, catching

anomalous books, detecting different but related books that

share content, detecting piracy, etc.

II. PRIOR WORK

The first part of the paper presents an efficient technique

for finding similar books and pages over a large corpus.

There has been much research on document matching. The

general idea of using min-hashing has been successfully

applied to many problems of media matching including

audio search [2], and more recently image search [3], [4].

The second part of the paper focuses on automatically

determining the kind of relationship between two matching

books from the first phase: exact match, exact content match

but different pagination, etc. Most prior work focused on

detecting similar documents, often based on synthetically

generated data, or documents with rather uniform properties

(web pages, etc.).

Cross-document classification has been studied before [5],

but it was studied as relation of texts and their semantics,

rather than in books where pagination is much more im-

portant. We define a classification that is adequate for a

large corpus of books with wide variations in input materials,

format and quality.

III. BOOK SIMILARITY DETECTION

Our approach to make this problem tractable at large

scale is based on two key building blocks: Min-hashing and
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Mapreduce.

A. Min-Hashing

Locally Sensitive Hashing (LSH) [6] is a method com-

monly used to perform approximate dimensionality reduc-

tion when dealing with vectors of high dimension. LSH is

based on a family of hash functions H where for each hash

function h ∈ H holds, and any two vectors a, b:

P (h(a) = h(b)) = sim(a, b).

LSH can be used for the calculation of set similarity. In our

case, we have a set of extracted text features, which can

be represented as a bitfield. The dimensionality is high: the

number of all possible 5-word shingles is huge. Min-hashing

[7] uses an LSH family of hash functions commonly used

for set similarity estimates. Given set A, and B:

P (MinHash(A) = MinHash(B)) =
| A ∩B |

| A ∪B |
(1)

which is also known as Jaccard similarity. To obtain the min-

hash value given hash function h, we calculate min-hash on

set S as follows. First we calculate the hash values for all

elements of S, and then we pick the minimum of those hash

values. In other words MinHash(S) = min(h(S)), where
h(S) is the set of hash values of elements from S. Since
the hash function is random, the probability that the hash

value for any given element from S is minimal is
1

| S |
.

That means the probability that min-hash is in some S′ ⊂ S
is | S′ | / | S |. Since MinHash(A) = MinHash(B) will
match only if the element whose hash value was minimal is

in | A ∩ B |, the probability of min-hash collision will be

| A ∩ B | / | A ∪ B |, which proves Eq. 1. By applying

multiple independent hash functions, we can then find a

good approximation to the similarity metric we want. So for

N hashes used and C collisions detected we may estimate

similarity of two sets to be C/N . Min-hashing allows us to

reduce dimensionality and therefore reduce the amount of

data we manipulate, which is crucial when dealing with 5B

pages (15M books x 330 pages).

B. Features

Our similarity detection scheme is sensitive to both the

number of min-hashes and, the choice of features that

we use to represent the document. Picking features that

are too common between unrelated documents results in

many false positives, and results a quadratic expansion of

collisions, that may degrade performance to the point where

it becomes intractable. For example, we could decide to

use the words themselves as features, which would be a

bad idea because many words are common across any two

books of the same language. At the other extreme, picking

overly discriminatory features increases the sensitivity to

OCR mistakes, imprecision in layout analysis, and other

types of errors that are common with document digitization.

So far, we have mainly experimented with text features,

which work well for roman text. Each feature extractor

operates on normalized text, derived from the raw OCR.

For example the normalized form of ‘(Nice) Day !’ would be

‘nice day’. By stripping the non-alphanumeric characters and

lowercasing the entire document we increase the likelihood

of matching documents with little loss of precision. We

have had our best results so far with a family of features

based on a sliding window of n-grams for both words and

characters. The words were represented as consecutive runs

of characters separated by word-delimiters. In Figure 1 we

show degradation of the min-hash based similarity measure

for identical pages with an artificially introduced character

error ratio (CER). We do the measurement for both word

n-grams (referred here as word shingles), and character n-

grams, on four common scripts in the corpus. One can

see that the similarity measure quickly degrades with an

increase of both CER and text length of an average feature.

Word shingle degradation depends on average word length,

which varies from script to script; character n-grams are

invariant. However we prefer word shingles over character

n-grams because word shingles produce 6-12 times fewer

features than character n-grams, resulting in faster min-hash

calculation.

The optimal choice seems to be to use word shingles of

size 5. Each shingle was represented by its 64bit fingrprint

to speed up calculation. Word shingle feature has been

successfully used before on a similar corpus [8], which was

one of main driving factor for us to use it.

C. MapReduce

MapReduce [9] is a software framework for running

computation on large data sets on clusters of machines,

allowing us to process data in parallel utilizing hundreds

of CPUs. MapReduce schematically runs in two stages: a

Map phase which transforms a set of key-value pairs into

another set of output key-value pairs and a Reduce phase

in which all the values with same output key are merged.

The framwork handles splitting the work, scheduling it, and

moving data around to make it efficient. It is suitable for

many real world problems, including the one discussed in

this paper. MapReduce has many open source implementa-

tions including Hadoop and Twister.

D. Algorithm Overview and Process Flow

Our algorithm for detecting similar documents (either

books or pages) is shown in Algorithm 1. There are two

stages. In the first we extract document features and calculate

a fixed number of min-hashes, and in the second we calculate

all colliding pair similarities based on min-hash collisions.

The general process flow of the framework is shown in

Figure 2. The first map-reduce extracts text-based features,

and computes their min-hash values per-book (100 hashes)

and per page (34 hashes). The second map-reduce derives
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Figure 1: Effects of of CER, language, and text features on min-hash similarity
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Figure 2: Process flow overview

book similarities based on min-hash collisions. Note that we

use the list of similar books from the first step as a filter,

to quickly remove books with no overlap. The third map-

reduce produces page similarities, and finally, the book and

page similarity information gets accumulated for each book

pair. From those we can derive the signals described below

and perform classification.

IV. BOOK TO BOOK RELATION CLASSIFICATION

A. Definitions

Accurately describing book-to-book relationships can be

a daunting task. Books are a long form of content that often

lives through multiple editions, rewrites, etc. Two pairs of

books may have an identical degree of similarity, but for one

pair the differences are manifested as different pagination,

whereas for the other they are due to the addition of a

preface.

We are ultimately interested in two axes. One is the

degree of pagination matching, because it lets us accumu-

late information over multiple copies of a page across the

matching books. The other is the amount of content overlap,

because high content similarity, regardless of pagination,

gives insight into book matching as whole.

This leads us to classify books with some amount of

similarity into four categories:

SAME PAGINATION Same text, same pagination (e.g.

same editions, possibly different re-prints with trivial

changes).

DIFFERENT PAGINATION Same text but paginated

differently, typically to fit in a different form factor.

CONTIGUOUS SUBSET One book contains the other

with the same pagination (one could be volume 1, and the

other volumes 1-3 of a multivolume work)

OVERLAPPING TEXT The two books have a large

amount of overlap, many pages in a row for instance, but

they do not fit in the categories above (e.g. same story in

two different collection of stories).
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Algorithm 1 Simplified similarity detection algorithm

1: kCount ⊲ Number of min-hash functions used

2: hash map← ∅ ⊲ Map of hashes to vector of id’s

3: count map← ∅ ⊲ Map of id pairs to number of

colliding hash functions

4: sim map← ∅ ⊲ Map of id pairs to their similarity

5:

6: // Stage 1) Extract features / Calculate min-hashes /

7: // Index by min-hashes

8: for all doc ∈ book corpus do

9: features← ExtractFeatures(doc)
10: minHashes←MinHashFeatures(features,
11: kCount)
12: for all hash key ∈ min hashes do

13: hashMap[hash key].push back(book.id)
14: end for

15: end for

16:

17: // Stage 2) Expand hash collisions

18: for all hash key ∈ hash map do

19: ids← hashMap[hash key]
20: for i← 0 to ids.size() do
21: for j ← i + 1 to ids.size() do
22: key ← ids[i] > ids[j] ?
23: (ids[i], ids[j]) : (ids[j], ids[i])
24: count map[key]← count map[key] + 1
25: end for

26: end for

27: end for

28:

29: // Stage 3) Collision counts to similarity

30: for all id pair in count map do

31: sim map[id pair]← count map[key]/kCount
32: end for

B. Signal Extraction

To perform book to book relation classification we used

a number of signals, some of which we will discuss here.

1) Book Similarity and Page-based Book Similarity: We

define Book Similarity as the text similarity between two

books. Ideally, books that share the same text should have

Book Similarity close to 1 regardless of whether they share

the same pagination.

Page-based Book Similarity is the average page similarity

across matching pages for two given books. It provides

some information about pagination. For instance if it is low

while Book Similarity is high, it means that the pages are

most likely going in and out of phase due to differences in

pagination.

2) Linear Fit: We model book text uniformly distributed

across pages with some offset from page zero. This way one

can assume pagination of the similar pages to look like:

p1 ∈ book1, p2 ∈ book2, p2 = a× p1 + b (2)

Parameters a (linear fit slope), and b (offset) provide a useful
signal. But so does the deviation in maximum predicted

page:

△page count = max(p2)− (a×max(p1) + b) (3)

Large deviation of a from 1.0 is indicator of the different

pagination, while large b (offest) or △page count may

indicate that book1 is subset of book2.

3) Relative Consecutive Page Correlation: ’Different

pagination’ books typically have partially overlapping con-

tent from page to page, in a pattern that wraps around

periodically over the course of the book. In particular,

pages of the book with higher density will often map to

two pages in the other book. We define a metric, which

we call relative consecutive page correlation to capture

this. Similar paginations result in higher correlation. So if

pi ∈ book1 (higher text density book), and pj ∈ book2, then
∃(i, j), sim(pi, pj) 6= 0∧ sim(pi, pj+1) 6= 0. If for all such
(i, j), we sum sim(pi, pj)+sim(pi, pj+1), and scale it with

total number of pages in book1 we get relative consecutive

page correlation.

C. Classification

As it will be demonstrated in section V-A, individual sig-

nals show good potential, but none of them is precise enough

to be used by itself. We run a multi-class classification based

on the all of the signals. For each class we calculate the

confidence of having that class, and then we pick the class

with highest confidence, or set it to ‘overlapping text’ if the

maximum confidence is too low. Confidence is calculated

as:

confidenceR =

K∏

i∈0

φR,i(si), φR,i : R 7−→ R[0,1] (4)

Where φR,i is manually specified for each signal used,

and relation we defined. Most of the functions φR,i may

be represented as low-pass, high-pass or band filters, with

appropriate threshold parameters. For example for the mean

page similarity signal (call it smps), and same pagination

book relation (call it RSP ), we have φRSP ,mps(smps) =
max(0, 1 − (

1−smps

0.4 )2). This is a high pass filter, that

removes everything below smps = 0.6. It may seem that

we need to design many φ functions (filters) manually. In

fact, only a few signals are relevant for each relation.

Note that there is a gray area here on how much overlap-

ping text we require for two books to be marked as ‘different

pagination’. In a few cases, two editions may have over 20

percent distinct text in preface, notes, etc, which would cause

us to mark two similar books as ‘overlapping text’.
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V. RESULTS

Our classification evaluation is based on 300 ground truth

book pairs, uniformly sampled from set of similar books.

Our training set consisted of around 1,600 ground truth pairs,

and was chosen in less random fashion as we added pairs of

interest to test the various features of our classifiers. In both

sets relationships were ground-truthed and double-checked

through manual side-by-side comparison. Each manual book

pair comparison takes around 4min which is the limiting

factor on the size of the ground-truth. The ground-truth is

only about 0.01% of the entire corpus.

A. Signal Evaluation

Various signal distributions for the ground truth training

data are shown in Figure 3.

As we can see in Figure 3a, the Linear Fit slope for

the ‘same pagination’ class remains very close to 1.0, as

expected, while it spreads out much more for other classes.

Similarly, in Figure 3b, we see that Relative Consecutive

Page Correlation is greater than zero for the ‘different

pagination’ class, while it’s almost always zero for the

‘same pagination’ class. Finally in Figure 3c we distinctly

see clusters. Book Similarity spreads out widely for all

classes, mainly due to the frequency of OCR errors. But

in combination with Page-based Book Similarity, it is easy

to separate ‘same pagination’ books from other classes.

In Figure 4 we present precision/recall curves for individ-

ual signals. They behave pretty well, but for precisions over

90%, recall drops significantly. One exception is Page-based

Book Similarity for the ‘same pagination’ class (Figure 4b),

but even then precision drops significantly when the books

are very similar. This particular effect is caused by cases

where one of the books is a subset of another with some

fraction of additional pages (similarity will be 1.0 even

though the two books are different). We implemented early

detection for such classes, which helped to remove noise

from the final multi-class classifier.

B. Clasification Evaluation

We initially tried multiple standard machine learning clas-

sifiers: Naive Bayes, various SVM schemas, and Winnow.

None of them showed satisfactory precision/recall; this may

be due to several factors, including the limited amount of

available labeled (ground-truth) data, gross imbalances in

the sizes of the various classes, and insufficient tuning of

parameters. While it is likely that we could have made the

machine-learning techniques to work well by appropriate

measures (e.g., importance sampling, alternative choice of

SVM kernel, etc.), we found that the simple alternative

of devising a hand-tuned formula resulted in adequate

performance, by combining the individual classifiers into

a multi-class detector, factoring in some of the intuitive

understanding that we developed after looking at many

examples. Table I shows Precision/Recall numbers for the

Table I: Classification evaluation (300 ground truth matching

pairs) for the manual classifier and Margin Support Vector

Machine classifier (trained on 1,600 ground truth matching

pairs).

Manual Margin SVM
Relation G.T.% Prec. Recall Prec. Recall
SAME PAGINATION 40.3 98.2 88.4 96.3 97.4
DIFFERENT PAGINATION 16.3 92.3 73.5 82.6 87.5
CONTIGUOUS SUBSET 7.7 95.2 86.9 44.4 26.7
OV ERLAPPING TEXT 36.0 78.6 96.3 100.0 6.2

manual classifier, as well as for the Margin Support Vector

Machine (one of the best performing machine learning

schemes in our data set) classifier. The Margin SVM shows

relatively good performance for the ‘same pagination’ class,

but did not perform as well for the other classes, because

we used a black-box implementation of the classifier and

did not tune it thoroughly. The manual classifier was tuned

for high precision on the classes that we intended to later

make use of, but other operating points could be chosen. In

the case of manual classification we explain the relatively

lower recall in for the ‘different pagination’ class by the fact

that different pagination tends to correlate with changes of

edition, in which the addition of a large preface, or dozens

of pages of appendix is not uncommon. These books can

easily misclassified as ‘overlapping text’. Another common

source of confusion for our classifiers is those books that

change in significant but subtle ways from edition to edition,

such as reprints of yearly books, manuals, official documents

with a different state name. We tend to classify them as

‘same pagination’ when they actually are different books

and therefore ‘overlapping text’.

C. Full Corpus Run

The relative size (scaled down by 15+M books that that

we had at the run time) of the classes is shown in Table I

in column G.T.%. It is interesting to note the abundance of

‘same pagination’ books. It is expected since before digital

typesetting, publishers would often just reuse the plates

across reprints or editions. The proportion of clusters with 2

books, regardless of class is about 10% of all books. Small

clusters of ten or smaller tend to be composed mostly of

books with ‘same pagination’. But as clusters get bigger, up

to 40 or 50 books, they turn into mixed sets of books with

different pagination. One consequence of this work is that

we effectively detect clusters of identical books, with either

same or different pagination. We can use both of those to

enhance the ‘master’ copy by mixing and matching pages

or paragraphs across copies.

VI. RUN TIME ANALYSIS

The similarity detection pipeline was all pair similarity

search using the MapReduce [9] framework, on typical
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Figure 4: Precision/Recall for individual features (on training set)

google cluster (similar to those described in [10]). Mea-

sured in the terms of cpu-hours and our corpus of more

than 15M books reading stored corpus takes 112751 cpu-

hours; text feature + min-hash extraction takes 14281 cpu-

hours (assuming that books are loaded already in RAM);

the book similarity calculation takes take 721 cpu-hours;

the page similarity calculation takes 110471 cpu-hours; the

page based book similarity (including aggregation of page

matches for each matched book pair) takes 16331 cpu-hours;

and aggregation of matched book pairs (from each book to

all matching books) and relation classification takes 4061

cpu-hours. The final clustering of the books is done on a

single CPU and it takes about 1 cpu-hour, with majority

of time spent reading data from remote servers. Excluding

the reading phase, we spent on average 3.5 cpu-seconds per

book in the pipeline.

1This is the total run time of mapreduce multiplied by number of
machines used. It does not exactly reflect the real per-CPU time because
some of the workers complete faster than others, but provides a reasonable
upper bound.

VII. FURTHER WORK

An obvious goal is to make manual classiffier redundant

and rely only on machine learning techniques. For this we

need to gather more ground truth, or possibly use manual

classifier results as noisy-ground truth on which we can do

machine learning. In addition to tuning the machine learning,

we could greatly improve classification by using features

that are not necessarily text based. For example bounding

box based signatures introduced by Spasojevic, Poncin and

Bloomberg (2011) in [11] could be used in a complementary

way with text-based features to improve page matching

signalin situations where the CER of the given script is high

but the word segmentation good, or on pages where it is hard

to get text flow correct (e.g. title page, table of contents).

VIII. CONCLUSION

In conclusion, we described a highly scalable mechanism

based on min-hashing to extract features out of pages and

books for the purpose of evaluating their similarity. We

further described a variety of signals based on page/book

similarities, which can be used to classify book pair relations
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Figure 5: Cluster size distribution for different classes

between similar books, from very simple (Linear Fit), to rea-

sonably sophisticated (Relative Consecutive Page Correla-

tion). We showed that these signals achieve decent precision

and recall when taken in isolation, but judicious combination

helps boost detection results significantly against a manually

classified set of books.
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