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Abstract—Spotting keywords in handwritten documents
without transcription is a valuable method as it allows one to
search, index, and classify such documents. In this paper we
show that keyword spotting based on bidirectional Long Short-
Term Memory (BLSTM) recurrent neural nets can successfully
be applied on online handwritten documents with non-text
content. It even works without preprocessing steps such as
text vs. non-text distinction and text line extraction. We also
propose a modification that can improve the precision with
little effort.

I. INTRODUCTION

Keyword spotting is known as the process to identify all
positions of a given keyword in a document. In the ideal case
handwritten documents would be transcribed completely and
stored in digital form. However, there are several limitations
in today’s methods which result in inaccurate transcription
and a high computational cost. In this situation, keyword
spotting offer a valuable alternative as it keeps computational
cost low while establishing the ability to search and index
in handwritten documents [1]. An other scenario where
keyword spotting can be useful is the classification of
documents according to the presence of specific keywords.

In this paper we evaluate the spotting of keywords in
online handwritten documents. This is achieved with bidirec-
tional Long Short-Term Memory (BLSTM) recurrent neural
nets.

Keyword spotting in handwritten text using BLSTM has
been introduced in [2]. This publication, together with
others, marks a shift in methodology from the well known
template based approach for keyword spotting [1] to meth-
ods based on handwriting recognition. This shift eliminates
the dependency on training templates for keywords to be
spotted. Instead, a large amount of data can be used to
train the system’s models for individual characters, which
will then be combined for the search of the keywords.
BSLTM, originally applied for speech recognition [3], had a
remarkable impact in the field of handwriting recognition
recently [4]. It could improve recognition of online and
offline handwriting, without the need for word segmentation,
neither in the test nor in the training phase. The application

of this system for keyword spotting as described in [2]
demonstrates its flexibility.

Online handwritten text faces a growing significance due
to the use of PDAs, Tablet PCs, and digital pens. The
understanding of such documents is a highly valuable goal,
e.g. for the scenario of a smart meeting room [5] where it
is desired to search, browse, and organize handwritten notes
taken with digital pens during a meeting. One important
difference to the offline modality is the linear character of
the data which binds elements related in temporal context
more than the spacial arrangement does.

In the literature two works on keyword spotting for online
handwriting can be found. In [6] a template approach is
proposed. Using dynamic time warping, segmented words
are compared to word templates. With this method, Jain
et al. could achieve a precision of 92% at a recall rate of
90%. Zhang et al. [7] reported a keyword spotting method
based on a character classifier. This method allows arbitrary
keywords, but it has to deal with the character segmentation
problem. Nonetheless, a precision of 94% for a recall of
87% have been achieved.

In these two papers like in most work on online handwrit-
ing, the focus lies on individual characters, words, or text
lines. This makes sense, as with PDAs individual characters
must be recognized and Tablet PCs allow handwritten input
on a given line. With digital pens, by contrast, the analysis
of the handwriting is done after the pen has been put in the
cradle. This results in whole pages covered with handwritten
text, drawings, structuring elements, etc. The analysis of
such documents requires difficult preprocessing steps, such
as text detection [8], [9] and line extraction [10], [11] which
lead to an increase of the error rate. In this situation the
method presented in this paper is a useful alternative, as it
can be applied to online handwritten documents without the
previously mentioned preprocessing steps. Keyword spotting
in entire documents is also performed in [12]. The authors,
however, use documents with text which is historical arabic
handwriting, and hence offline. The template based method-
ology is adopted.

The remaining part of this paper is structured as fol-
lows. In Section II-A the preprocessing of the digital ink
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and feature extraction are described. Then in Section II-B
and II-C keyword spotting with BLSTM is explained. We
propose a useful modification of the system in Section III.
The experiments and their results are shown in Section IV.
Finally, we draw conclusions in Section V.

II. KEYWORD SPOTTING

The approach for keyword spotting applied in this paper is
based on a fully-fledged text line recognizer in contrast with
the template based methods mentioned in the introduction.
The considered task is position retrieval. This means that,
given a user query in terms of a keyword, all positions where
the keyword in question occurs are returned. To achieve this
goal, the documents have to be transformed into sequences
of feature vectors. These vectors are then passed on to our
keyword spotting system, which ranks all probable keyword
occurrences according to their likelihood. Next we describe
these steps in greater detail.

A. Preprocessing and Feature Extraction

The digital ink we are dealing with was generated by
Anoto pens. In order to save disc space, this device com-
presses the ink by removing sample points holding redundant
information. To get a uniform data stream, the points must
be recovered again. Between two strokes, the pen does not
touch the paper, which results in no recorded ink. Such gaps
must be filled to have a consecutive sequence of sampling
points. This step is done by interpolating a straight line.

Commonly used features for handwriting recognition of
online documents, as described, for example, in [13], depend
on text line segmentation. This type of features do not fit
our requirements since no segmentation should be performed
beforehand. What we actually need are features extracted in
the original writing order. We propose seven features which
satisfy this need. They are extracted from each sampling
point i using the following four properties: the force fi, the
coordinates xi and yi, and the time stamp ti. The list of the
features is given as follows:

1) The pen force fi, where 0 indicates no contact between
pen and paper and 1 is the maximal force recorded.
Anoto pens distinguish 256 different values.

2) ∆x of the segment between point i− 1 and i+ 1:

∆x =
xi+1 − xi−1

d(i− 1, i+ 1)
(1)

where d(i, j) is the Euclidean distance between sample
point i and j.

3) ∆y of the segment between point i− 1 and i+ 1

∆y =
yi+1 − yi−1

d(i− 1, i+ 1)
(2)

4) Change of angle at point i: ∆φ = φi − φi−1, where

φi = arccos(∆xi) + πI∆yi>0 (3)

and I∆yi>0 ∈ {0, 1} is the indicator function which
specifies if ∆yi > 0.

5) The Speed d(i−1,i)
(ti−ti−1)r is given by the Euclidean dis-

tance between point i − 1 and i divided by time in
terms of sampling intervals, where r is the sampling
rate. This value is normalized to [−1, 1] using the
hyperbolic tangent.

6) Distance from the current sample point i to the nearest
crossing point nxi of the digital ink. As feature value

1
d(i,nxi)

is chosen and normalized to [−1, 1] by the
hyperbolic tangent.

7) Number of crossing points on the segment between
points i− 1 and i.

B. BLSTM Neural Networks

The considered keyword spotting system is based on a
recently developed recurrent neural network, termed bidirec-
tional long-short term memory (BLSTM) neural network [4].
Instead of simple nodes, the hidden layers are made up of
so-called long short-term memory (LSTM) blocks. These
memory blocks are specifically designed to address the
vanishing gradient problem, which describes the exponential
increase or decay of values as they cycle through recurrent
network layers. This is done by nodes that control the
information flow into and out of each memory block. The
input layer contains one node for each of the seven features,
while the hidden layer consists of the LSTM cells, and the
output layer contains one node for each possible character
plus a special ε node, to indicate “no character”.

The network is bidirectional, which means that the se-
quence is fed into the network both ways, forward and back-
ward. This is because the form of a handwritten character
does not only depend upon the previous but also upon the
following character. The bidirectional architecture is realized
by two input and two hidden layers. One input and one
hidden layer deal with the forward sequence, and the other
input and hidden layer with the backward sequence. The
output layer sums up the activation levels from both hidden
layers at each position in the text. The output activations of
the nodes in the output layer are then normalized to sum up
to 1. Hence they can be treated as a vector indicating the
probability for each letter to occur at a particular position.
A path through this probability vector sequence therefore
corresponds to a sequence of letters. The likelihood of
these letters being written in the text can be computed
by multiplying the corresponding values along the path.
For more details about BLSTM networks we refer to [14]
and [4].

C. Keyword Spotting using BLSTM Neural Networks

For keyword spotting, a modification of the sequence
of probability vectors returned by the neural network is
needed. A virtual output node, termed any node, is added
with a static value of 1 for its activation. The special

74



symbol *, corresponding to the any node, is then added to
the beginning of the keyword to be spotted. In addition,
between each letter of the keyword the ε symbol is inserted.
The keyword hello will turn into *ε εhεeεlεlεoε where

indicates white space, which ensures that only complete
words will be found.

To find the most probable occurrence of a given keyword
in the sequence of output activations, the Connectionist
Temporal Classification (CTC) Token Passing algorithm, a
kind of dynamic programming, is used [14].

The CTC algorithm finds a mapping between the keyword
and the output activations of the corresponding characters
that maximizes the summed up log-likelihoods. This map-
ping preserves the sequential order of both sequences. A
matrix of so called tokens ϑ(i, t) is initialized, where i is
the index of the letter in the keyword and t is the time step
of the output activation. The value of the tokens is defined
by

ϑ(0, t) = 0

ϑ(i, t) = ∞ if t < i

ϑ(i, t) = max
j={0,1,2}

(ϑ(i− j, t− 1)) + log(o(i, t))

where o(i, t) is the output activation of character i at time
step t. Value ϑ(i−2, t−1) is only considered if the previous
letter ci−1 is ε. At each time step the token for the last letter
of the keyword (the white space) can therefore be interpreted
as the log-likelihood that the keyword ends at this position.

The any node at the beginning of the keyword allows
the CTC algorithm to wait with the mapping of the first
character until it finds the optimal position in the stream.
For more details on the keyword spotting algorithm we refer
to [2]. An actual output activation of the BLSTM network
can be seen in Figure 1.

The time complexity of the keyword spotting as described
above is given by O(nT ) where n is the number of labels
and T the length of the input sequence. This is considerably
faster than a full translation for a text search which has a
complexity of O(m2T ) where m is the number of words in
the dictionary.

At each time step the normalized log-likelihood of the last
keyword letter, the start-, and the end position is recorded
and will be referred to as match. The normalization is done
by dividing the log-likelihood by the number of keyword
letters. The matches are filtered by a threshold reducing
their number to a manageable size. In addition, overlapping
matches are eliminated taking the most likely one in a greedy
fashion.

Based on a threshold T , the matches are divided into a
set with log-likelihoods larger than T containing the posi-
tive matches, and a set containing the remaining, negative
matches. In Figure 2 some matches and their normalized
log-likelihoods can be seen.
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Figure 1: The activation level for some nodes in the output
layer where input sequence constitutes the word keyword.
The activation is close to 0 most of the time for normal
letters and peaks only at distinct positions. In contrast, the
activation level of the ε node is nearly constantly 1. The
level for the any node * is 1 by definition.

Figure 2: Examples of matches returned by the keyword
spotting procedure when looking for the word time. Their
log-likelihood are -0.38, -0.82, and -2.7. The first two
matches are correct. The ink actually covered by the match
is highlighted black.

III. MODIFICATION

In this section, we propose a method to improve the
keyword spotting procedure as it was described in the section
before.

Analyzing the false positive matches, the confusion be-
tween similarly written words could be identified as a major
source of errors. To tackle this problem for a given keyword
w, the set of all words W with a string edit distance
lower than 3 are collected from a dictionary. In our case
the dictionary contains all words of the data set. For each
match the log-likelihood llv of all similar words v ∈ W is
evaluated.

The value used to separate positive and negative matches
when compared with the threshold is given by

α llw + (1− α)(llw − max
v∈(W∪{w})

(llv)) (4)

where for α a value between 0 and 1 is chosen according
to results on the validation set.

IV. EXPERIMENTS

A. Data

The proposed procedure for keyword spotting was evalu-
ated on the IAMonDo-database1 [15]. The dataset consists of

1The IAMonDo-Database is online available at
http://www.iam.unibe.ch/fki/databases/iam-online-document-database
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Figure 3: Two sample documents from the dataset. Text ink
is black, non-text ink is gray.

1,000 documents produced by 200 writers. The documents
contain text in textblocks, lists, tables, and diagrams, as
well as non-text in drawings and diagrams. About 72% of
all strokes belong to text. Examples of these documents
can be seen in Figure 3. Some of the documents are quite
challenging regarding the proper extraction of text lines.
The digital ink, which is the main part of the document,
is stored in terms of groups of successive vectors consisting
of X-, and Y coordinates, time, and pressure value. Detailed
transcription and segmentation ground truth is available.

B. Setup

From the database 403 documents are used for training,
200 for validation and 203 for testing. The division of the
data into these three subsets is given in [15].

The neural nets are trained in two different ways, ten for
each way. The first set of neural nets is trained only on the
text lines in the training set. For the second set the training
documents are divided into slices containing exactly 40 text
and non-text strokes each. A slice contains half of the strokes
of the previous slice in the same document. If a slice contains
a word only partially, strokes will be added to the end or
removed from the beginning until the slice contains only
complete words. The second set of nets are trained with
these slices. To deal with non-text elements a special “non-
text” label is introduced and assigned to the non-text strokes
in the training set.

The text lines or slices in the validation set are used to
stop the training iterations before over-fitting effects appear.
More detail on the training of BLSTM neural network can
be found in [4]. The 2,000 most frequent words from all
documents are used as the keywords to be spotted. Stop
words are ignored.

C. Evaluation

The ground truth of the documents (see [15]) is used to
identify the correct matches among all matches that were
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Figure 4: Precision-recall plot of the experiments: In (a)
keyword spotting is applied on text lines only, in (c) on
slices and in (b) and (d) on entire documents with mixed
contents. In (a) and (b) nets are trained on text lines, while
in (c) and (d) nets are trained on slices.

returned by the keyword spotting system for the 2,000 words
in the test documents. A match is defined correct if the text
line which covers more than 50% of its width contains the
keyword.

Knowing the correct matches, the number of true positive
TP , false positive FP , true negative TN , and false negative
FN ones can be identified given a threshold for the log-
likelihood. With these values precision = TP

TP+FP and
recall = TP

TP+TN are calculated. Varying the threshold, a
precision-recall plot can be produced. A precision-recall
curve gives us an idea about the noise in the returned results,
given the percentage of how many true elements are found.

The area under the curve (AUC) of the precision-recall
plot is a measure for the quality of the keyword spotting
procedure. In this section we compare the results based on
the AUC of the best network as a percentage with respect
to 1.

D. Results

In the first experiment we show the capability of our
system to spot keywords in text-only documents. Using the
nets trained on text lines, keyword spotting is applied only
to the text lines of the test documents. In this experiment an
AUC of 74.2% is achieved.

When spotting keywords in entire documents the system
must be able to ignore non-text content. The results achieved
by the different sets of networks are quite diverse. With an
AUC value of only 19.6%, the nets trained on text lines only
seem not to be able to cope with the data pattern representing
non-text. The nets trained on the slices are able to deal much
better with this problem almost keeping the precision of
keyword spotting on text-only data which is demonstrated by
an AUC value of 71.3%. Figure 4 displays the correspondent
precision-recall curves.

When applying the modification which takes the log-
likelihood of similar words into account, the AUC can be
boosted from 74.2% up to 78.3% on the text line system
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Figure 5: Precision-recall plot of the modification: In (a) and
(b) the nets are trained on text lines and spotting is applied
on text lines only as well. In (c) and (d) nets are trained
on slices and spotting is applied on entire documents with
mixed content. Curve (a) and (c) show keyword spotting in
unmodified manner, while in (b) and (d) the modification
mentioned in Section III is applied.

and from 71.3% to 74.7% on entire documents. An α value
of 0.25 has proven to be best. Especially in the region of
80% recall the precision can be raised by more than 10%.
See Figure 5 for the corresponding precision-recall plots.

V. CONCLUSION

In this paper, we applied word spotting driven by BLSTM
nets to online handwritten documents with text and non-
text content. We were able to demonstrate that almost no
precision was lost compared to the application on perfectly
segmented text lines containing only text. This allows one
to index and search in raw documents as they are obtained
from a digital pen. Moreover, we proposed a modification
to the keyword spotting procedure which could further raise
the precision.

In the future more enhanced modifications to further
improve the selection of correct matches will be evaluated.
Another line of research will be the spotting of non-text
elements, such as arrows, boxes, and tables in online hand-
written documents.
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