
An Open Architecture for End-to-End Document Analysis Benchmarking

Bart Lamiroy
LORIA

Nancy Université – INPL
Nancy, France

Bart.Lamiroy@loria.fr

Daniel Lopresti
Computer Science and Engineering

Lehigh University
Bethlehem, PA 18015, USA

lopresti@cse.lehigh.edu

Abstract—In this paper, we present a fully operational,
scalable and open architecture allowing end-to-end document
analysis benchmarking without needing to develop the whole
pipeline. By decomposing the analysis process into coarse-
grained tasks, and by building upon community provided state-
of-the art algorithms, our architecture allows any combination
of elementary document analysis algorithms, regardless their
running system environment, programming language or data
structures. Its flexible structure makes it straightforward to
plug in new algorithms, compare them to other algorithms,
and observe the effects on end-to-end tasks without need to
install, compile or otherwise interact with any other software
than one’s own.

Keywords-benchmark; web services; document analysis; per-
formance evaluation;

I. INTRODUCTION

The issue of benchmarking, and more generally speaking,
comparing results in experimental science, is a recurring and
fundamental discussion (cf. [1], [2], [3] for an incomplete
list in the document analysis domain). To compare reported
results with others in an irrefutably objective framework is
essential in all scientific domains. Better still is to be able
to reproduce reported experiments and compare the obtained
results with those published. Moreover, it is not sufficient to
only have access to the outcomes of experiments; in many
cases sound scientific debate arises over conclusions and
deductions taken from a set of experiments when contesting
parties question the validity of the claims on grounds of
incomplete parameter scopes or experimental conditions.
This is not only part of normal scientific experimentation, it
is the core essence of scientific activity.

In the domains of machine perception, and document
analysis in particular, many initiatives and efforts have
emerged over the years, to provide the research community
with tools that would allow sound contradictory debate and
objective comparison between published methods.

They can be placed into several categories:
• annotated datasets, allowing experiments on the same

data, and thus partially share parameters [4], [5], [6];
• execution frameworks and software, which allow

experiments to run on shared code bases, and therefore
have a greater level of interaction and re-usability [7],

[8], [9] (re-usability can be seen as some form of
reproducibility);

• data markup languages, while sometimes much re-
lated to the previous point, they allow for more trans-
parent data sharing and comparison of experimental
results [10];

• contests, held at international conferences or hosted on
a more continuous basis by scientific associations.

Despite these efforts1, and despite the peer review pro-
cessing, there still remains room for progress in the area
of contradictory debate and objective comparison between
published methods [11]. There are several factors that con-
tribute to this, especially when it comes to reproducibility
and comparison of results.

Shared datasets, for instance, while having significantly
contributed to improving performance metrics [2], fail in
other cases to contribute to a productive debate. After
being used for some time, research teams inevitably, and
often unconsciously, learn to adapt to their specificities and
implicit context assumptions; their “ground-truths” (or pre-
recorded interpretations) suppose a one-size-fits-all approach
across all evaluations.

Execution frameworks and open-source software have the
advantage of allowing users to share the same code base
and experimental run-time conditions or input-output con-
ventions. While this has a positive impact on reproducibility,
their scope is sometimes limited, since users are coerced
into software environments, programming languages or other
operational constraints that may not be optimal in their
specific context. Furthermore, these tools require significant
efforts to maintain (open-source community development
efforts require a critical mass to be self-sustaining) and may,
over time, suffer from technological obsolescence, making
them harder to maintain on newer platforms.

Contests are great tools for providing instant snapshots
of the state of the art in the evaluation context that was
specifically defined for the contest. Rarely do they offer the
opportunity to “replay” the contest with other parameters,

1Owing to space constraints, it is only possible for us to cite a small
fraction of the many existing efforts to contribute shared resources for the
use of the research community.

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.18

42

or even to compare contestants of one year with those of
previous editions ... or to imagine what if scenarios where
the evaluation or execution context are shifted into a different
setting. The result is that their outcomes are static, and hence
cannot support a dynamic debate.

Creating the ideal conditions for productive, reproducible
experimental science is not an obvious task, and is cer-
tainly not one that can be achieved by anything short
of a whole community. It cannot be dictated, but rather
comes from a common adoption of what are considered best
practices. The previously enumerated examples are steps in
that direction. We believe that they can be re-formulated
into a new paradigm, providing an even higher level of
scientific trustworthiness in and reproducibility of reported
experimental results [11]. Because of space constraints, we
are only addressing those parts of the technical implications
of this paradigm that are concerned with execution and
reproduction of algorithms. Other aspects, focusing on data
or interpretation storage and retrieval, result certification or
provenance recording have been described before [12], [13].

This paper will focus of the question of reproducibility
from an operational point of view, and especially in the
light of document analysis problems. It should be noted that
the basic ideas we are presenting are more general and not
confined to the field of document analysis.

We begin by analyzing in Section II the technical features
required for a generic framework for supporting reproducible
experiments. In Section III, we lay out the technologies and
architectures that address these requirements and present the
tools we have developed to implement our system.

II. REQUIREMENTS FOR REPRODUCIBLE SCIENTIFIC
EXPERIMENTS

The question on how to produce and report scientifically
sound and valid experiments is not new [14], it is an on-
going debate in all disciplines, e.g. [15], [16].

The basics are:
1) reporting of clearly set goals and defined interpretation

framework,
2) full access to all experimental data,
3) reporting of the experimental apparatus, setup and pro-

tocol, in such a way that it becomes fully reproducible,
4) all parameters defining the data (if applicable) and

those related to the experimental process.
While these seem obvious, and are apparently met by

the initiatives presented previously, the currently available
resources fail to produce the effect of fully reproducible open
experiment reporting. The reasons for this include:

Full disclosure and complete reporting: is often diffi-
cult to achieve for methods and algorithms, notably because
of space constraints on publications. Even if the reporting
is completely transparent, it still may be hard to reproduce
complex algorithms and obtain identical behavior due to
implementation choices, bugs, etc. Making source code

available, or using shared development or execution plat-
forms [7], [8], [9] is helpful, but practice shows that this only
rarely yields comparative studies. The reason for that is that
the platforms are very much technology dependent (choice
of specific programming languages, operating systems, data
structures or other constraining paradigms) that often require
a time investment that discourages others from using it.
They also may suffer from progressive obsolescence when
not actively maintained. Releasing source code can also be
problematic when private funding, IP or patents come into
play.

Full access to all experimental data: should not really
be an issue, given today’s ubiquitous access to storage and
bandwidth (although this does become an issue when the
amount of data becomes too large [17]), but there are more
subtle difficulties. The way benchmark datasets are currently
conceived and made available is rather “monolithic” in the
sense that they have usually been created for a specific
experimental context, and that their intrinsic parameters
(e.g. type of images, resolution, content, frequency ...) and
associated interpretations are those that suit this context. In
order to adapt to these implicit constraints, re-use of exist-
ing datasets often comes with recomposition, selection and
filtering of the original data, blurring the exact boundaries
of the effectively used data.

Exact description of all parameters: is difficult to
provide, especially for data, since they often reflect a mix of
arbitrary design decisions (my method does only take .tif
images) and more subjective ones ("reasonably" good scan
quality so that the OCR doesn’t fail). Because of different
experimental contexts, it is rarely the case that exhaustive
experiments are reported over complete datasets, without
the selection and filtering mentioned beforehand. This also
sometimes holds for contests where training data is not
always formally characterized, for instance.

The result is that most of the time, results are reported and
published in good faith and that peer reviewers need to find
the subtle compromise between investigating the veracity
of the alleged claims and their experience-backed feeling of
their plausibility. This also holds for readers who would want
to build upon published results, either to compare their own
methods to the published ones using the same experimental
context, or to change the experimental context and setup to
test the published approaches with other data.

In order to achieve the goals described in this section,
any published result (data, algorithm and experimental setup
parameters) should be transposable in any context and
should allow any user, using any kind of environment to
immediately reproduce the experiments in the exact same
conditions as reported. Elsewhere we have addressed some
of the issues in referencing datasets and interpretations [12],
[13]. The following sections will focus on how to reproduce
experimental setups and run algorithms in the exact same
conditions as published.

43

III. GLOBAL ARCHITECTURE

The solution presented here has been tested and integrated
in the DAE platform at http://dae.cse.lehigh.edu/DAE. Its
global architecture is represented in Fig. 1. It is noteworthy
to mention that the platform itself is merely a validation of
the concepts presented in this paper, and that the latter can
be implemented outside of the platform without loss of the
general goals announced in the previous section.

A. Document Analysis Algorithms as Web-Services

Rather than to require user to adopt a specific program-
ming paradigm, dedicated libraries or integrated systems,
we propose to build our solution on an open standard and to
publish algorithms as web services [18]. This solution offers
the following advantages:

Platform Independent Open Standard: web services are
built upon a series of standards that are well documented and
widespread. They can be accessed and used through a great
variety programming languages and execution environments.
While platform independent, they are completely inter-
operable, and services running in one environment/language
can exchange data and collaborate seamlessly with services
running elsewhere.

This means that this approach is not incompabible with
conventions users may have to run their experiments in their
preferred environment, while, at the same time, giving them
access to software and experiments of others.

Formalized I/O: WSDL is part of the previously men-
tioned standard. It permits formalizing the input and output
of services in a detailed way, and to provide service brokers
to publish the list and location of available services. These
are important features from a functional point of view, since
they improve the level of re-usability and interaction with
provided services. It makes it, for instance, possible to
have more “semantic” information on the required inputs
and provided outputs of an algorithm implementation and
use zero-programming environments. These environments
provide the opportunity to combine and connect available
services into complex workflows, and “program” end-to-end
pipelines (in our case document analysis pipelines) made
out of multiple external individual programs (cf. Taverna,
discussed in Section III-C).

No Code Re-Engineering: because of the open stan-
dards and the formalized I/O, there is no real need to re-
engineer existing code to make it available as a web service
nor is there any need to do so to adapt and re-use an existing
service in one’s personal environment.

Although the above statement is true, existing software
doesn not turn into a web service by itself. There are multiple
degrees of integration with the web service paradigm that
can be envisaged and engineered. At the lowest level,
providing the existing code does not require interactive user
input and runs as a standalone command-line program, it is

possible to use off-the-shelf wrappers that call the code as
an external command (e.g. those provided in Section III-B).

Smooth Learning Curve (if any): given the facts enu-
merated above, the whole framework presented in this paper
is totally non-disruptive with users’ usual way of working
and experimenting. They continue to develop software ex-
actly the way it was done before, in the environment they are
familiar with. Since the solution is built upon an open and
widely adopted standard, all available tools and resources
related to web services can be leveraged and integrated when
needed. The learning curve for adoption is therefore smooth
and directly related to the integration needs of the user.
On the other hand, the user has immediate access to all
algorithms published by others without additional cost.

B. Creating or Hosting Web Services

From a purely technical point of view, the only require-
ment is that a web service be associated with a network
address, hosting an interface that complies with WSDL. For
instance, the web services hosted by the DAE platform are
available at http://dae.cse.lehigh.edu/DAE/services/soap.

It should be noted that there is no need for the web
services to be universally accessible. The WSDL server does
not need to be accessible from other parts of the Internet and
may perfectly be running on one’s personal machine, on a
local non-routable network, if there are no other intended
users of the service.

As already stated before, web service servers can be made
as complex as needed for specific task and integration re-
quirements, but that is beyond the scope of this paper. How-
ever, in order to achieve the claims of contributing to broad
reproducible experimental research, it is necessary that there
is a clearly perceivable benefit from using this framework.
Complex technical constraints are a hurdle to attain this.
We therefore provide interested users with a straightforward
way to set up, test and use their personal applications as
web services. Full instructions and an installation kit are
provided at http://sourceforge.net/projects/daeplatform/. The
kit mainly consists of 3 PHP files and require no more
than 15 lines of code to be modified to operate, mainly
consisting in naming the right I/O variables and constructing
the command string corresponding to the application to be
launched.

To be publicly registered and referenced by the DAE
platform, the process is only slightly more complicated. A
web service must comply with a number of supplementary
conditions, the most important being that its input and output
parameters be defined in accordance with the DAE data
model. However, there is no specific obligation for public
web services to be registered in this way to still be available
to the broader community. Since the protocols are open
and standardized, other service providing repositories can
be created and interact with the ones presented here.

44

Figure 1. Overview of the DAE platform architecture

C. Using and Accessing Web Services

While it remains perfectly possible to write web service
aware programs that would interact through WSDL inter-
faces, there is no real need to program anything to use the
document web services mentioned in the previous section.
The only thing that is needed is a web service invocation
tool like Taverna [19].

Fig. 2 gives an example of what this looks like. Taverna
allows the user to create input and output flows, and redirect
them to and from web services, in a graphical click-and-play
environment. The workflows can be saved into lightweight
XML description files and shared with others. The tool also
provides simple and straightforward operators like loops,
parallelization, etc.

IV. CONCLUSION

In this paper we have advocated the use of web services
to improve overall reproducibility of published document
analysis results. In this section we will review the advantages
this offers and how it can contribute to more generic and
widespread benchmarking and evaluation protocols.

A. Availability, Access and Archiving

Providing software as a web service removes three major
hurdles found with simply making source code available,
without adding disadvantages, since all source code can still
be provided (and should be promoted as good practice).

First, difficulties related to cross-platform issues disap-
pear. Moreover, since the development overhead of making
one’s own code available as a web service is close to
zero (and is most certainly far less than distributing and
maintaining cross-platform code) there is a clear incentive
to contribute programs through web services. Second, cases

where intellectual property or commercial constraints have
previously hindered sharing, can now be integrated for
research and benchmarking, since all resources can remain
under the control of those who provide the service. Finally,
it becomes technically possible to keep operational and
functional archives of legacy programs through virtualization
techniques, since older code, running on obsolete operating
systems or in discontinued environments can still be made
available by having them run in virtual machines. The
DAE platform, for instance, provides access to VirtualBox-
hosted [20] environments.

There is one catch to the approach presented in this
paper, however: the dependency on network and computing
resources. Other approaches, notably those consisting in
distributing source code only, leave it to those who want to
reproduce the results to prepare and execute the experiments,
and therefore dispose of the required resources. In our case,
it is the provider of the service who also provides execution
resources. Partially centralized or distributed community
resources may alleviate this.

B. Reproducibility, Benchmarking and Evaluation

The great gain that is achieved through this framework
is full reproducibility for results, since the complete op-
erational conditions of experiments are available, without
bias related to implementation choices or parameter tuning.
Complete experimental pipelines can be formalized and
distributed with Taverna (or other, equivalent resources) and
executed anywhere, without constraints. These pipelines (or
workflows) can be re-appropriated by others and enhanced,
challenged or transposed to other contexts, and through
publication, contribute to sound and productive contradictory
discussion of results and methods in general.

45

Figure 2. Taverna workflow example, automatically taking random images from a DAE dataset, running different binarization algorithms.

By doing so, they become a cornerstone to the estab-
lishment of open, sharable benchmarking procedures in a
transparent and reproducible way. Furthermore, it makes
it much easier to conceive and distribute complex end-
to-end workflows as evaluation procedures for individual
algorithms. For example, studying both the influence of
individual OCR or layout analysis programs with respect
to higher level interpretation tasks, like named entity de-
tection, can be formalized and published as a workflow of
generic web service components. It then becomes possible to
replace individual algorithm contributions (e.g. a new OCR
algorithm) without affecting the general experimental setup,
and thus maintaining the objectivity of resulting performance
measurements, without major re-engineering or software
integration efforts.

C. Future Work

Currently ongoing work is related to the deployment and
effective use of the framework for IAPR ICDAR and GREC

contests [21]. This will provide, on the one hand, stress tests
on the DAE infrastructure hosting some of the web services.
The data generated will give useful information for further
use and development. It will also provide user feedback on
the usability and the efficiency of the approach. One of the
interesting expected by-products of an effective use of the
paradigm is that in a first stage, contributers are expected to
simply provide a web service executing their software (either
self-hosted or hosted on the DAE platform). In a second
stage, when trying to interconnect various web services
there will be need for specific contributions like format
converters. It is expected that these converters, however, can
be published as web services as well, thus contributing to
a virtuous cycle of increased usability and usefulness and
eventually users.

Other further extensions include a thorough evaluation of
the impact on performance (throughput and bandwidth as
well as overhead caused by the web service orchestrator)

46

compared to direct execution. It should be emphasized that
this framework is designed for research flexibility, and is
probably not the optimal solution for high performance
production environments. Also, there is an open question
whether the standard synchronous WSDL approach is actu-
ally the best solution, or if in some cases, REpresentational
State Transfer (REST) Web services would not be more
appropriate.

A complete tutorial comprising examples and source
code downloads can be found at http://tinyurl.com/
DAE-Web-Service-Tutorial.

Acknowledgements

The authors wish to thank Lehigh students A. Borden
and Q. Long for their technical contributions and research
on Taverna. Bart Lamiroy was a visiting scientist at Lehigh
University in 2010-2011. This work was conducted at the
Computer Science and Engineering Department at Lehigh
University and was funded through DARPA IPTO via
Raytheon BBN Technologies.

REFERENCES

[1] T. Kanungo, H. S. Baird, and R. M. Haralick, “Special issue
on "performance evaluation: Theory, practice, and impact",”
IJDAR, vol. 4, no. 3, p. 139, 2002.

[2] G. Nagy, “Document systems analysis: Testing, testing, test-
ing,” in DAS 2010, Proceedings of the Ninth IAPR Interna-
tional Workshop on Document Analysis Systems, D. Doerman,
V. Govindaraju, D. Lopresti, and P. Natarajan, Eds., 2010,
p. 1.

[3] E. Valveny, P. Dosch, A. C. Winstanley, Y. Zhou, S. Yang,
L. Yan, W. Liu, D. Elliman, M. Delalandre, É. Trupin,
S. Adam, and J.-M. Ogier, “A general framework for the
evaluation of symbol recognition methods,” IJDAR, vol. 9,
no. 1, pp. 59–74, 2007.

[4] I. T. Phillips, S. Chen, and R. M. Haralick, “CD-ROM
document database standard,” in Document image analysis.
Los Alamitos, CA, USA: IEEE Computer Society Press,
1995, pp. 198–203.

[5] G. Thoma, “Automating the production of bibliographic
records for MEDLINE,” National Library of Medicine,
Bethesda, MD USA, Tech. Rep., September 2001.

[6] G. Agam, S. Argamon, O. Frieder, D. Grossman, and
D. Lewis, The Complex Document Image Processing (CDIP)
test collection, Illinois Institute of Technology, 2006.

[7] T. M. Breuel, “The ocropus open source ocr system,” in DRR,
ser. SPIE Proceedings, B. A. Yanikoglu and K. Berkner, Eds.,
vol. 6815. SPIE, 2008, p. 68150.

[8] J. Rendek, G. Masini, P. Dosch, and K. Tombre, “The search
for genericity in graphics recognition applications: Design
issues of the qgar software system,” in Document Analysis
Systems, ser. Lecture Notes in Computer Science, S. Marinai
and A. Dengel, Eds., vol. 3163. Springer, 2004, pp. 366–377.

[9] Stefan Jaeger, Guangyu Zhu, David Doermann, Kevin Chen,
and Summit Sampat, “DOCLIB: a Software Library for Doc-
ument Processing,” in International Conference on Document
Recognition and Retrieval XIII. San Jose, CA, 2006, pp. 1–9.

[10] David Doermann, Elena Zotkina, and Huiping Li, “GEDI –
A Groundtruthing Environment for Document Images,” Ninth
IAPR International Workshop on Document Analysis Systems
(DAS 2010), 2010.

[11] D. Lopresti and B. Lamiroy, “Document Analysis Research
in the Year 2021,” in Twenty-fourth International Conference
on Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA/AIE 2011), ser. LNCS, Syracuse
University. Syracuse, NY, United States: Springer, Jul. 2011.

[12] B. Lamiroy and D. Lopresti, “A platform for storing, vi-
sualizing, and interpreting collections of noisy documents,”
in Fourth Workshop on Analytics for Noisy Unstructured
Text Data - AND’10, ser. ACM International Conference
Proceeding Series, IAPR. Toronto Canada: ACM, October
2010.

[13] B. Lamiroy, D. Lopresti, H. Korth, and H. Jeff, “How
carefully designed open resource sharing can help and ex-
pand document analysis research,” in Document Recognition
and Retrieval XVIII, ser. SPIE Proceedings, G. Agam and
C. Viard-Gaudin, Eds., vol. 7874. San Francisco, CA USA:
SPIE, January 2011.

[14] K. R. Popper, The Logic of Scientific Discovery, reprint ed.
Routledge, October 1992, original edition, 1934 “Logik der
Forschung”.

[15] B. M. E. Moret and H. D. Shapiro, “Algorithms and experi-
ments: The new (and old) methodology,” Journal of Universal
Computer Science, vol. 7, no. 5, pp. 434–446, 2001.

[16] M. Schwab, M. Karrenbach, and J. Claerbout, “Making
scientific computations reproducible,” Computing in Science
and Engg., vol. 2, pp. 61–67, November 2000.

[17] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns
and TRECVid,” in MIR ’06: Proceedings of the 8th ACM
International Workshop on Multimedia Information Retrieval.
New York, NY, USA: ACM Press, 2006, pp. 321–330.

[18] D. Booth and C. K. Liu, “Web services description language
(WSDL) version 2.0 part 0: Primer,” W3C, Candidate Rec-
ommendation, Mar. 2006.

[19] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li,
P. Lord, M. Pocock, M. Senger, R. Stevens, A. Wipat, and
C. Wroe, “Taverna: lessons in creating a workflow environ-
ment for the life sciences,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 10, pp. 1067–1100,
August 2006.

[20] J. Watson, “Virtualbox: bits and bytes masquerading as ma-
chines,” Linux Journal, vol. 2008, February 2008.

[21] B. Lamiroy, D. Lopresti, and T. Sun, “Document Analysis
Algorithm Contributions in End-to-End Applications,” in 11th
International Conference on Document Analysis and Recogni-
tion - ICDAR 2011. Beijing, China: International Association
for Pattern Recognition, Sep. 2011.

47

