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Abstract—This paper describes a new algorithm for docu-
ment binarization, building upon recent work in energy-based
segmentation methods. It uses the Laplacian operator to assess
the local likelihood of foreground and background labels,
Canny edge detection to identify likely discontinuities, and
a graph cut implementation to efficiently find the minimum
energy solution of an objective function combining these
concepts. The results of this algorithm place it near the top
on both the DIBCO-09 and H-DIBCO assessments.

Index Terms—I.4.0.b Image processing software, I.4.6.b
Graph-theoretic methods, I.4.6.d Pixel classification.

I. INTRODUCTION

Binarized document images represent a miracle of effi-

ciency: by recording each pixel as a simple on-or-off value

they require a fraction of the storage space as compared to

a full-color scan, yet they can preserve most if not all of the

significant information content of a document. Many useful

computations on document images rely on binarization as

an initial step, and a high-quality binarization simplifies

most subsequent processing. By contrast, a low-quality

binarization that omits significant detail or contains other

errors can hinder the success of any methods that rely upon

it.

For these reasons, researchers have exerted considerable

effort toward improving binarization algorithms. In partic-

ular, commonly cited milestones include the work of Otsu

[11], Niblack [10], and Sauvola et. al. [14]. Each improves

upon its predecessors, but still falls short of perfection,

particularly for documents with challenging attributes such

as fading and bleed-through. Indeed, research continues on

various binarization methods, and a recent contest compar-

ing different techniques attracted 43 distinct entries.

Perhaps not surprisingly, document binarization is a

subjective and ill-posed problem. The configuration of

intensities that form the dot of a letter ’i’ in one case

may represent a simple inkstain in another. The presence

of pathological examples such as this does not diminish the

usefulness of binarization in the vast majority of instances.

Nevertheless subjectivity poses a problem for the evaluation

and comparison of different binarization methods. One way

around this difficulty is to look at how well binarization

supports some end application, such as optical character

recognition [5], [9]. A second approach simply ignores

the ambiguities, and evaluates binarization performance in

terms of a chosen ground truth [3]. This paper employs

the latter method, using the data set created for the 2009

Document Image Binarization Contest (DIBCO-09) and the

sequel contest that focused on handwriting (H-DIBCO).

Reading the brief descriptions of the techniques entered

in the first contest reveals that most employ some combina-

tion of background estimation and compensation, adaptive

thresholds, and heuristic filtering techniques [3]. A few rely

on Markov random field models, like the method presented

herein. Two make use of the Laplacian in some way, while

a third detects “domes”, perhaps performing an analogous

function. The different techniques vary in complexity, but

many involve a series of pre- and post-processing steps. At

least one other binarization method has employed a graph

cut implementation similar to the one used here [7], [6],

but does not report DIBCO results.

II. MOTIVATION AND METHOD

The approach explored in this paper relies on a combi-

nation of several simple concepts. First, it employs a well-

known vector property to achieve illumination invariance:

the Laplacian of the image intensity, ∇2I . The Laplacian

measures the divergence of the intensity gradient, and

therefore has greatest magnitude in areas that are local

peaks and valleys of intensity – negative in sign for the

former and positive for the latter. Thus it naturally separates

concentrations of darkness and lightness, independent of the

absolute local intensity level.

Second, the cues from the Laplacian operator are aggre-

gated across the entire image by finding the optimal solu-

tion to a global fitness function. This enforces long-range

consistency in the final solution, and discourages local

choices that are incompatible with one another. The global

fitness function chosen is easily solved with graph cut

(maximum flow) methods, which efficiently compute the

optimal binarization [1]. Similar approaches have proven

effective in foreground segmentation for videos [15].

Third, the results of Canny edge detection inform the bi-

narization, so that discontinuities in the output binarization

coincide with detected edges where possible. The graph cut

formulation provides the mechanism behind this linkage:

one can omit graph edges between neighboring pixels

wherever an image edge appears. The next section gives

further details on the graph construction. Edge detection

has been used in some prior work, but not in combination

with a global energy function [12], [4].
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The method treats dark and light areas asymmetrically

in one respect. The Laplacian operator approaches zero in

areas of near uniform intensity. Thus the binarization of

large uniform areas depends entirely on the Laplacian at

the boundaries, and in the absence of any strong signal

some low-texture areas may receive incorrect labels on the

basis of small fluctuations at their border. To guard against

this possibility, the labeling fitness expression incorporates

a strong bias towards the background label for a small set

of bright outlier pixels (i.e., those 2 standard deviations

above their local mean). This breaks the symmetry in favor

of designating uniform areas as background, corresponding

to an assumption that most text documents will not contain

large areas of pure ink. For the ten DIBCO-09 test images,

the heuristic described above misidentifies only five pixels

on one single image that happens to contain a large inked

region.

A. Problem Formulation

Assume an m × n grayscale image I where the pixel

intensities Iij lie within the range from 0 (black) to 1

(white). The goal of binarization is to produce a new image

B of the same dimensions, composed exclusively of black

and white pixels, i.e., Bij ∈ {0, 1}. The binarized image

should be perceptually similar to the original image, a

notion we can formalize by defining an energy function

EI(B) minimized by the ideal binarization B∗.

B∗ = arg minBEI(B) (1)

Markov random field modeling suggests the use of

energy functions comprising a sum of individual label

penalty terms (meant to capture the affinity of a particular

pixel for a particular label) and pairwise label mismatch

terms (meant to capture the tendency of neighboring pixels

to share a label, for example). Such functions can be

efficiently solved via algorithms based upon graph cuts,

among other means [1]. For the average DIBCO image,

the solution takes less than two seconds to compute on a

2.2 GHz laptop.

EI(B) =
∑

i,j:Bij=0

L0
ij +

∑
i,j:Bij=1

L1
ij

+
∑

i,j,i′,j′:Bij �=Bi′j′

C(i, j, i′, j′) (2)

Here L0
ij is the cost of assigning label 0 to the pixel

at (i, j), which intuitively should be lowest for intensity

valleys. Likewise L1
ij is the cost of assigning the label

1. C(i, j, i′, j′) is the cost of assigning different labels

to the pixel at (i, j) compared to the pixel at (i′, j′). C
will be zero for non-neighboring pixels; this formulation

corresponds to a Markov random field and allows a more

specific expression for the energy.

EI(B) =
m∑

i=0

n∑
j=0

[
L0

ij(1−Bij) + L1
ijBij

]

+
m−1∑
i=0

n∑
j=0

Ch
ij(Bij �= Bi+1,j)

+
m∑

i=0

n−1∑
j=0

Cv
ij(Bij �= Bi,j+1) (3)

Here Ch
ij and Cv

ij represent the costs of a label mis-

match between Bij and its neighbor to the south or east,

respectively. They take on either a constant value c or

zero, as described below. The boolean inequality expression

converts to either 0 or 1 in the standard manner.

The easiest choice would simply set all Ch
ij and Cv

ij to

a positive constant c. This approach enforces smoothness

in the binarized solution by penalizing any discontinuities.

However, some discontinuities must be tolerated in an

accurate binarization. Specifically, the edges of the inked

regions are discontinuous. Thus the energy function must

not penalize discontinuities between neighbors if an edge

separates them.

Standard edge detectors identify individual edge pixels,

but the formulation in Equation 3 requires knowing which

side of the pixel should be discontinuous with its neighbors.

Fortunately, the gradient direction provides an appropriate

cue, with two possible choices. If one places the discon-

tinuity on the high-gradient side, inked areas will tend

to include edge pixels, whereas placing discontinuities on

the low-gradient side will tend to group edge pixels with

the background. The experimental implementation here

chooses the former policy. Assuming that Eij represents the

presence or absence of a Canny-detected edge at pixel (i, j)
[2], the final expressions for Ch

ij and Cv
ij appear below.

Ch
ij =

⎧⎨
⎩

0 if Eij ∧ (Iij < Ii+1,j)
0 if Ei+1,j ∧ (Iij ≥ Ii+1,j)
c otherwise

(4)

Cv
ij =

⎧⎨
⎩

0 Eij ∧ Iij < Ii,j+1

0 Ei,j+1 ∧ Iij ≥ Ii,j+1

c otherwise
(5)

As mentioned, the Laplacian of the intensity provides a

useful starting point for the label costs because it identifies

areas of converging and diverging gradients (which indicate

heights and depressions respectively):

L0
ij = ∇2Iij (6)

L1
ij = −∇2Iij (7)

Note that this formulation is independent of absolute in-

tensity and perfectly symmetric with respect to light and

dark pixels. The asymmetric bias mentioned previously is

then applied by setting L1
ij = τ for certain bright outlier
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pixels. With some abuse of notation, in the formulas below

let Gr(Iij) indicate the intensity at pixel (i, j) after the

image I has undergone smoothing by convolution with a

Gaussian kernel of radius r, representing the extent of the

search for outliers.

L1
ij =

{ −∇2Iij Hij ≤ 2Sij

τ Hij > 2Sij
(8)

where

Hij = Iij −Gr(Iij) (9)

Sij =
√

Gr(H2
ij) (10)

The computed image H resembles the original image I
adjusted to have local mean intensity of zero. (In this case,

“local” means the contributions of neighboring pixels are

weighted by a Gaussian of radius r.) The computed image

S represents the local standard deviation of H .

B. Parameters

The algorithm just described includes five important

parameters: τ , c, r, and two Canny thresholds tlo and thi.

Actually, the specific value of τ matters little so long as

it is large enough to force pixels to take a foreground

label. The expected size of ink components in the document

should guide the choice of r: it should be at least several

multiples of the expected ink stroke width. The remaining

three parameters interact more strongly. With low values

of c, the edge locations matter less and local sign changes

in the value of the Laplacian dominate the discontinuities

in B. Alternatively, with high values of c, discontinuities

in B will increase the overall energy unless they align

with detected edges, and the choice of tlo and thi becomes

critical because it determines which edges appear and thus

the components included in B. In general, the edges of

ground-truth ink boundaries often have higher contrast

than noise sources such as stains, smudges, and bleed-

through from the opposite side of a paper document, etc.

However, with high values for c, edges must be detected as

completely as possible to minimize the discontinuity costs

in Equation 3. These considerations motivate a high value

for thi and low value for tlo.

Empirically the following choices are effective parameter

settings for a range of documents and may be used as

sensible defaults: τ = −2, c = 0.8, r = 20, tlo = 0
and thi = 0.4. (The latter two are specified as a fraction

of the maximum observed edge gradient.) On the other

hand, given a particular document or set of documents

with ground truth, one can optimize the parameters for

greater performance on those documents and others like

them. This strategy was adopted for the DIBCO contests.

For example, with clean documents the values of c and thi

may be reduced for better recall without loss of precision.

In cases where a training set can be used for explicit opti-

mization, the experiments in the next section begin with the

values above and execute a derivative-free unconstrained

minimization on the F-measure using Matlab’s fminsearch

function [8]. It is worth noting that such tuning only

changes the final performance by a few percent: in other

words, a wide range of parameter values (including the

defaults previously mentioned) still give acceptable results.

C. Post Processing

One innovation that can slightly improve binarization

quality is to repeat the energy minimization step after

adding additional low-strength edges located within inked

areas of B after the first pass. (Trying to include these faint

edges in one pass would also pick up unwanted noise in

background areas, but restricting their inclusion to areas

likely to contain ink avoids this problem.) If E1
ij are the

Canny edges with the original value of thi, and E2
ij are

the Canny edges with tlo = thi = 0, then generate a new

combined edge map:

Eij = E1
ij ∨ (E2

ij ∧Bij) (11)

Binarization with the new edge map introduces no new

false positive labels, although it can produce some false

negatives particularly on print documents (examples visible

in Figure 1). However, it also lowers the false positive rate

by hollowing out letter loops that were mistakenly filled in

the original binarization. Because the net effect is usually

beneficial, the experiments adopt this procedure.

A final wrinkle may reflect a quirk of the ground truth

data used in the experiments. A visual examination of the

discrepancies between initial computed binarizations and

the ground truth provided shows a disproportionate number

of false positives positioned on the northwest border of

each ink component. A single erosion of the binarization

output to remove all northwest corner pixels (those with

background to north and west of them) restores isotropy to

the error profile and consistently improves the quantitative

results. Since the algorithm development provides no justifi-

cation for such an operation, it may reflect the way in which

the ground truth was developed. The experiment section

reports numbers both with and without this adjustment.

III. EXPERIMENTS

This paper adopts its experimental framework from the

two DIBCO contests [3], [13], using a small set of docu-

ments for training and a separate set for testing. DIBCO-09

used a selection of ten test documents with ground truth

binarization; five were handwritten and five printed. All

contain one or more features known to hinder standard

binarization algorithms: stains, bleed-through, colored text,

large areas of background, and unusual fonts. Following

the contests’ conclusion the document images and ground

truth were released as public data sets.

Results in the contest were evaluated on four measures of

binarization quality: F-measure, peak signal-to-noise ratio,

negative metric rate, and misclassification metric penalty.

Good binarizations maximize the first two of these and

minimize the latter two. Formulas for the four quantities

appear below, assuming the following definitions: NTP ,
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NFP , NTN , NFN are respectively the number of true

positive, false positive, true negative, and false negative

identifications of ink pixels; Tij is the ground truth labeling,

and Dij is the distance of each pixel to the boundary

contours of the ground truth.

F =
2 ·R · P
R + P

(12)

where

R =
NTP

NTP + NFN
(13)

P =
NTP

NTP + NFP
(14)

PSNR = 10 log
(

1
MSE

)
(15)

where

MSE =
1

n ·m
m∑

i=1

n∑
j=1

(Bij − Tij)2 (16)

NRM =
RFN + RFP

2
(17)

where

RFN =
NFN

NFN + NTP
(18)

RFP =
NFP

NFP + NTN
(19)

MPM =
MPFN + MPFP

2
(20)

where

MPFN =
1

SD

m∑
i=1

n∑
j=1

Dij · (¬Bij ∧ Tij) (21)

MPFP =
1

SD

m∑
i=1

n∑
j=1

Dij · (Bij ∧ ¬Tij) (22)

SD =
m∑

i=1

n∑
j=1

Dij (23)

Table I summarizes the results of the method described

in this paper for several parameter settings on the DIBCO-

09 test set. The reported results use parameters tuned on a

training set provided to all entrants in the contest, consisting

of two handwritten images and two printed images, all with

ground truth. Despite the small size of this training set,

the method still performs strongly on the test images. It

beats 42 of 43 contestants, scoring significantly above the

median, and falls an insignificant fraction short of the top

method’s results. Figure 1 shows the results for a printed

document from the test set.

The table also shows several results for comparison. De-
fault uses the standard parameter values from Section II-B

and omits the post-processing described in Section II-C.

Comparative results from DIBCO-09 appear below the

F NRM MPM
Method

(%)
PSNR

(×10−2) (×10−3)
All test documents 91.07 18.51 4.39 0.67
Print documents 94.30 18.95 2.87 0.54
Hand documents 87.31 19.66 4.92 0.70
Default 90.02 17.91 3.12 1.25

DIBCO-09 first 91.24 18.66 4.31 0.55
DIBCO-09 second 90.06 18.23 4.75 0.89
DIBCO-09 median 83.98 15.81 4.51 5.48

TABLE I
RESULTS ON DIBCO-09 TEST IMAGES.

Tuning c r tlo thi

Training set 0.48 22.2 0.0001 0.47
Print (median) 0.78 16.8 0 0.56
Hand (median) 0.48 21.8 0.0005 0.39

TABLE II
PARAMETER SETTINGS FOUND FROM TRAINING DATA, USED TO

GENERATE THE RESULTS IN TABLE I.

double line: Lu & Tan’s unpublished method was the

highest-rated in the competition, and Fabrizio & Marcotegui

was second highest [3].

The table also shows results achieved for print and

handwritten documents separately, although no prior results

have been reported in these subcategories for the DIBCO-

09 images. Since the number of documents is so small,

these experiments combine the training and test images

and adopt a leave-one-out methodology. In this framework

parameter tuning uses all the documents except one, which

is tested using the resulting parameter set. The reported

numbers average the results for all documents together.

The tuned parameters for each group of documents mostly

resemble each other, but differ somewhat between the two

groups. The median parameter values found appear in

Table II.

Table III shows blind results from the H-DIBCO compe-

tition [13], using parameter values trained from the DIBCO-

09 handwriting samples. The method does comparatively

well: only four of the seventeen entrants placed better.

Without a detailed description of the other methods in the

contest, the reasons for the differing levels of performance

are unclear. Visual inspection suggests that the algorithm

was too conservative in identifying faint pen strokes under

the chosen parameters; Figure 2 shows one example where

thin connecting lines disappear in the result.

F NRM MPM
Method

(%)
PSNR

(×10−2) (×10−3)
Tuned on DIBCO-09 89.73 18.90 5.78 0.41

H-DIBCO-09 best 91.78 19.78 8.180 0.231
H-DIBCO-09 median 85.06 17.56 10.42 0.95

TABLE III
RESULTS FROM H-DIBCO [13].
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Fig. 1. Binarization of a print document from the DIBCO-09 test set.

Fig. 2. Binarization of a handwritten document from the H-DIBCO test
set (third worst of the ten test images).

IV. CONCLUSION

This paper presents a document binarization algorithm

based on the Laplacian of the image intensity, with an en-

ergy function minimized efficiently via a graph-cut compu-

tation. It incorporates Canny edge information in the graph

construction to encourage solutions where discontinuities

align with detected edges. Graph cut methods have proven

successful for other sorts of segmentation but have received

fairly little attention to date for document binarization.

These results show that they should be taken seriously.

A reference implementation of the algorithm in Matlab is

available from the author’s web site.

Aside from its excellent performance on challenging data

sets as compared to state-of-the-art competitors, the algo-

rithm also retains an attractive simplicity. It seems likely

that some of the more complicated techniques developed

by others to solve specific problems in binarization might

prove complementary to the basic approach. For example,

parameter tuning in the edge detector currently provides

the main mechanism for ignoring marks bleeding through

from the reverse side of the paper. Others have developed

techniques that explicitly recognize such marks and remove

them from the final binarization [16]. Such methods might

prove even more effective when used in combination with

the basic algorithm in this paper.
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