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Plan of Discussion 

•  Machine Learning (ML) 
– History and Problem types solved 

•  Probabilistic Graphical Models (PGMs) 
– Tutorial 

•  Specialized models 

•  Computational Forensics Application 
– Handwriting 
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What is Machine Learning? 

•  Automatic construction of programs from
 examples of input-output behavior 

•  Marriage of Computer Science and Probability
/Statistics 

1.  Computer Science: 
•  Artificial Intelligence  

–  Tasks performed by humans not well described algorithmically 

•  Data Explosion  
–  User and thing generated 

2.  Statistics: 
•  Methods that learn from data (MLE or Bayesian)  3 



When is Machine Learning Needed 

•  Problems involving uncertainty 
– Perceptual data (images, text, speech, video) 

•  Information overload 
– Large Volumes 
– Limitations of time, cognitive ability 

•  Constantly Changing Data Streams 
– Search engine adaptation 

•  Principled design 
– High performance systems 



Problem Types and Methods 
1.  Classification 

–  OCR, Spam Filter (Logistic Regression) 
–  Text Categorization (SVM) 

2.  Regression: 
–  LeToR (GP) 

3.  Collective Classification 
–  Speech, Handwriting (HMM) 
–  PoS, NE (MEMM, CRF) 

4.  Inferring a Probability Distribution 
–  Computational Forensics (BN, Sampling) 

5.  Clustering  Data Mining (EM, BIC) 5 



History of ML 
•  First Generation (1960-1980) 

– Perceptrons, Nearest-neighbor, Naïve Bayes 

– Special Hardware, Limited performance  
•  Second Generation (1980-2000) 

– ANNs, Kalman, HMMs, SVMs 
•  HW addresses, speech reco, postal words 

– Difficult to include domain knowledge 
•  Black box models fitted to  large data sets 

•  Third Generation (2000-Present) 
– PGMs, Fully Bayesian (including GP) 

•  Image segmentation, Text analytics (NE Tagging) 

– Expert prior knowledge with statistical models 

20 x 20 cell Adaptive Wts 

USPS-RCR 

USPS-MLOCR 



x1 x3 

x4 

x12 

Classification: OCR 

•  Handcrafted rules will 
result in large no of 
rules and exceptions 

•  Better to have a 
machine that learns 
from a large training set 

Wide variability of same numeral 

Input x={x1…x12}: Image Features 
Output (y): Class Labels {y0, y1,.y9} 

Features (xi ):  
Values: Proportion of black pixels in  

       each of 12 cells xi  i=1,..,12 

xi
0=0-10% 

xi
1=10-20% 

…. 

No of parameters=1012- 1 
                         Or 1 trillion 
Per class 
No of samples needed=?? 

|Val(xi)|=10 

1,000 chars/page,  
1,000s of pages 

Handwritten 
Digits 



Regression: Learning To Rank 

–  Log frequency of query in 
                              anchor text 
–  Query word in color on page 
–  # of images on page 
–  # of (out) links on page 
–  PageRank of page 
–  URL length 
–  URL contains “~” 
–  Page length 

Input (xi):  
(d Features of Query-URL pair)  

Output (y):  
Relevance Value 

In LETOR 4.0 dataset 
46 query-document features 
Maximum of 124 URLs/query 

(d >200) 

Yahoo! data set has d=700 

          Target Variable 
-     Point-wise (0,1,2,3) 
-     Regression returns continuous value 

- Allows fine-grained ranking of URLs 

Traditional IR uses TF/IDF 



Role of PGMs in ML 
•  Dozens of ML models, Large Data sets 

– PGMs Provide understanding of: 
•  model relationships (theory) 
•  problem structure (practice) 

– Allow including human knowledge 
•  Nature of PGMs 

1. Represent joint distributions 
1. Many variables without full independence 
2. Expressive  
3. Declarati 

2. Inference: Separate model/algorithm errors 
3. Learning 
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Representation 
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1.  Bayesian Network (BN) 
Nodes: variables Edges: direct causality 

2.  Markov Network (or MRF) 
– Edge: influence (non-directional) 

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

y xi
0 xi

1 xi
2 xi

3 xi
4 xi

5 xi
6 xi

7 xi
8 xi
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y0 0 0 0.1 0.2 0.3 0.2 0.1 0.1 0 0 

y1 

y9 

Probabilistic Graphical Models 

x1 x2 x12 

y 
Naïve  
Bayes 
(OCR) 

Naïve  
Markov 

P(x, y) = P(y) P(xi | y)
i=1

12

∏

x1 x2 x12 

y 

P(x, y) = 1
Z

φi (xi , y)
i=1

12

∏
where

Z = φi (xi , y)
i=1

12

∏
x
∑

12 CPDs 
No of parameters=100 x 12=1,200 
(instead of 1 trillion) 

x1
0 y0 100 

x1
0 y1 1 

x1
9 y9 100 

Factors ϕ (x1,y)R 
                (potential) 

Z is normalizing constant:  
Partition function 

 P(y) 

 

P(y | x) = φi (xi , y)
i=1

m

∏

P(y | x) = 1
Z(x)

P(y | x)

Z(x) = P(y | x)
Y
∑

Joint distribution: product of CPDs 

Joint distribution: product of factors 

  CRF: MN for conditional P(y|x) 
              y target  x: observed 

Is unnormalized 

Z(x) Partition function of x 

 
P(y | x)

(correlation irrespective of others) 
 P(xi|y) 

Directed  
Acyclic  
Graph 

Undirected  

CPDs 

m=no of factors 



Discriminative vs Generative Training 
    Independent variables x ={x1,..x12} and binary target y 

1.  Generative: estimate CPD parameters  

2.  Discriminative: estimate CRF parameters wi 

P(y,x) = P(y) P(xi | y)
i=1

12

∏

x1 x2 x12 

y 

x1 x2 x12 

y 

Jointly optimize 12 parameters 
High dimensional estimation  
but correlations accounted for 
Can use much richer features:  
       Edges, image patches sharing same pixels 

Naïve 
Markov 

p(yi |φ) = yi (φ) =
exp(ai )
exp(aj )j∑

where aj=wj
Tφ	


Naïve 
Bayes 

Low-dimensional estimation  
  independently estimate 12x 10 parameters 
But pixel independence is false 
For sparse data generative is better 

Potential Functions (log-linear) 
ϕi(xi,y)=exp{wixi I{y=1}},  
               ϕ0(y)=exp{w0 I{y=1}} 

 

P(y = 1 | x) = exp w0 + wi xi
i=1

12

∑⎧
⎨
⎩

⎫
⎬
⎭

        P(y = 0 | x) = exp 0{ } = 1

P(y = 1 | x) = sigmoid w0 + wi xi
i=1

12

∑⎧
⎨
⎩

⎫
⎬
⎭

  where sigmoid(z) = ez

1+ ez

Unnormalized  

Normalized 
I has value 1 
when y=1, else  0 

multiclass 
Logistic Regression 

From joint 
get required  
conditional 



Model Trade-offs in expressive power and learnability 
1. MEMM and HMM are more easily learned 

•  Directed models: ML parameter estimates have closed-form  
•  CRF requires expensive iterative gradient-based approach  

2. Ability to use rich feature sets 
•  HMM  needs explicit modeling over features 
•  CRF and MEMM are discriminative models and avoid this 

3. Independence Assumptions made 
•  MEMM assumes Y1 independent of X2 not given Y2   
•  Later observation has no effect on current state 

•  In activity recognition in video sequence,   
 Frames  labelled as running/walking.  
 Earlier frames may be blurry but later ones clearer 
 Model incapable of going back 

Collective Labeling: Three Models 

CRF 

MEMM 

HMM 

Both CRF and MEMM are Discriminative Models 
Directly obtain P(Y|X) 

HMM is generative  
Needs P(X,Y) 

P(X,Y ) = P(Xi /Yi )P(Yi |Yi−1)
i=1

k

∏

P(Y / X) = P(X,Y )
P(X)

Sequence of observations X={X1,..Xk}  
Need a joint label Y={Y1,..Yk} 

P(Y | X) = P(Yi | Xi )P(Yi |Yi−1)
i=1

k

∏

Joint 
distribution 

 

P(Y | X) = 1
Z(X)

P(Y ,X)

P(Y ,X) = φi (Yi ,Yi+1)
i=1

k−1

∏ φi (Yi ,Xi )
i=1

k

∏     

  Z(X) = P(Y ,X)
Y
∑



Dynamic BN: Training Data for LeToR 
•  Dynamic BN can model Time Trajectory 
•  LeToR relevance values are assigned by human editors 

•  Expensive 
•  Can change over time 

•  Click Logs: 
•  provide implicit feedback  
•  cheap proxy for editorial labels Ci: Click on ith URL in retrieved list 

Hidden Variables: 

Inference: posterior probabilities of Ei,Ai and Si 

r  ≡ P(Si = 1 | Ei = 1) 
       = P(Si = 1, Ei = 1) / P(Ei = 1)              
           = P(Si = 1, Ei = 1, Ci = 0) / P(Ei = 1)  +  P(Si = 1, Ei = 1, Ci = 1) / P(Ei = 1)   

           = 0  +  P(Si = 1, Ci = 1 | Ei = 1)               [satisfaction only upon click] 
    = P(Si = 1 | Ci = 1) P(Ci = 1 | Ei = 1) 



Unusualness of Handwriting 



Probabilistic Model  for Handwriting Style 

No of parameters = 4,799 

P(R,L,A,C,B,T) 

|Val(X)|=4 x 5 x 3 x 4 x 4 x 5 = 4,800 

QDE  
Features 



BN for “th” 
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L A T 

B 

R 

C 

No of parameters= 

P(C|T) 

P(B|L, A) 

Joint Probability 

Instead of 4,800 

� 

P(L,A,T,B,C,R) = P(L)P(A)P(T)
P(B | A,L)P(C |T)P(R |B,C)



BN for “and”  

18 
Nine variables 
No of parameters needed= 809,999 

No of parameters needed= 688 
(Less than 1%) 



Inference 
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Inference and Queries with PGMs 
•  Inference: Probabilistic Models used to 

answer queries  
•  Query Types 

1. Probability Queries 
•  Query has two parts 

–  Evidence:  a subset E of variables and their instantiation e 
–  Query Variables: a subset Y of random variables in network 

2.  MAP Queries 
•  Maximum a posteriori probability 
•  Also called MPE (Most Probable Explanation) 



Inferring the Probability of Evidence 
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P(E = e) = P(Xi | pa(Xi )) |E=e
i=1

n

∏
X \E
∑

•  An intractable problem 
•  #P complete 

•  Tractable when tree-width is less than 25 
•  Approximations are usually sufficient (hence sampling) 

•  When P(Y=y|E=e)=0.29292, approximation yields 0.3 

Probability Distribution of Evidence 

Probability of Evidence 

More Generally 

Sum Rule of Probability 

From the Graphical Model 

P: solution in polynomial time 
NP: verified in polynomial time 
#P complete: how many solutions 

� 

P(L,C) = P(L,A,T,B,C,R)
A ,T ,B ,R
∑

             = P(L)P(A)P(T)P(B | A,L)P(C |T)P(R |B,C)
A ,T ,B ,R
∑

� 

P(L = l0,C = c1) = P(L = l0)P(A)P(T)P(B | A,L)P(C = c1 |T)P(R |B,C = c1)
A ,T ,B ,R
∑



Inference: Rarity 
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nPRC PRC Conditional nPRC 

For identical match 

Rare Common 

nPRC=1.17 x10-5 nPRC=0.156 

nPRC=2.14 x 10-8 nPRC=0.166 



Learning 
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Learning Problems with PGMs 
•  Parameter Learning (given structure) 

•  Structure Learning 
– Search through network space 

•  Partial Data 
– EM 
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Bayesian Networks Markov Networks 

Local normalization within 
each CPD 

Global normalization 
constant (the partition 

function) 

Estimate local groups of 
parameters separately 

Global parameter coupling 
across the network 

(even MLE has no closed 
form) 

Data Collection 



Parameter Learning For BN 
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P(x5|x1,x2) 

Bayesian Estimate 

Bayesian Estimation 

X3 X1 

X5 

X2 

X6 

X4 
Max Likelihood Est 

Prior 

Likelihood 

Posterior 



Parameter Learning for MN 

Inference 
(compute Z) 

        Compute       
gradient of           

Initialize θi  

Optimum 
reached

? 

yes 

no 

 (θ)

 Update θi   

Iteration number 

Lo
g-

lik
el

ih
oo

d 

Edge	  
Poten
*al	  

X5 = 0 X5 = 1 X5 = 2 X5 = 3 

X1 = 0 3.35 26.10 5.99 1.42 

X1 = 1 1.54 2.14 1.76 0.94 

X1 = 2 20.01 69.75 33.49 14.90 

X1 = 3 2.99 9.12 4.71 2.25 

X
3 

X
1 

X
5 

X
2 

X
6 

X
4 

Joint distribution for pairwise MN  

No of Parameters    :  
20 + 16 + 20 + 20 + 25 + 15 + 20 + 4 + 5 + 3 + 4 + 4 + 5 = 161    

Log-linear model 
Estimated edge potential for 

x5 

x1 

e.g., 

� 

P(x1,...,xn :θ ) =
1

Z(θ)
exp θ i f i(Di)

i=1

k

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 
(θ) = θi fi (ξ[m])

m
∑⎛⎝⎜

⎞
⎠⎟i=1

k

∑ − M ln exp θi fi (ξ)
i=1

k

∑⎛⎝⎜
⎞
⎠⎟ξ

∑

 

∂
∂θi

1
M
(θ) =

fi (ξ[m])m∑
M

−
fi (ξ)exp θi fi (ξ)i=1

k∑( )ξ∑
exp θi fi (ξ)i=1

k∑( )ξ∑

Log-likelihood of M i.i.d. samples 

n: # variables, k: # cliques θi: parameters 

Gradient of log-likelihood 

Concave, BUT no analytical maximum  
   => Use iterative gradient ascent  

Inference step for Z:  Computes unnormalized 
prob for every setting of X  => expensive 
•  Approximate inference  
     -  particle-based methods (MCMC sampling) 
     -  global algorithm (belief prop, mean-field) 
•   Approximate objective  
      - Not as much inference 
     -  Pseudo-likelihood, maxent 

θi



Structure Learning of BNs 
•  Problem: Many perfect maps for distribution P* 
•  Goal: Asymptotically recover G*’s equivalence class 
•  Search through space of BNs 

–  Score function for each BN 
–  ScoreL (G : D) = log-likelihood (θG : D) 

•  θG are parameters of G 
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X1 X2 X3 X4 X5 X6 

Height 
Relation 

Shape of 
loop of ‘h’ 

Shape of 
arch of ‘h’ 

Height of  
‘t’ cross 

Baseline 
of ‘h’ 

Shape of 
‘t’ 

X
3 

X
1 

X
5 

X
2 

X
6

X
4 

X
3

X
1

X
5

X
2

X
6

X
4

χ2 (X4, X6) = 224  

χ2 (X6, X2) = 167  

Dependency 

Conditional independence 

χ2 (H0: X4 ┴ X2 | X6) = 42  

χ2 (H0: X4 ┴ X1 | X6) = 43  

G1=Human 
G2=Based on 
Chi-sq tests 

3-fold 
Cross 
Validation 

Average 
Score 

G1 -2598 

G2 -2591 

Compute χ2 statistics for all 
pairwise variables & construct Ep 

Let G = {V,E}, E = {}, k = 1 
Compute S0  

Eij = Eji=E; Pick a pair of edges {(i,j),
(j,i)} from Ep with largest χ2 statistics, 
add each to Eij, Eji, estimate θij, θji , 

compute score Sij, Sji 

Sij>Sji>Sk-1 

E = Eij 
k = k+1; Sk = Sij  

E = Eji 
k = k+1; Sk = Sji  

Delete {(i,j),(j,i)} 
from Ep 

Ep= ф 

Sji>Sij>
Sk-1 

Stop 

No No 

Yes Yes 

Yes 

No 

Structure from  
Chi-squared 
Independence  
Tests 



Structure Learning of MNs 
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P X1 X2 X3 X4 X5 X6 

0 0.20 0.05 0.10 0.00 0.29 0.17 

1 0.16 0.00 0.62 0.36 0.24 0.04 

2 0.37 0.12 0.28 0.30 0.30 0.07 

3 0.27 0.08 0.34 0.17 0.71 

4 0.75 0.00 

H X1 X2 X3 X4 X5 X6 

X1 1.34 2.14 2.20 2.41 2.65 2.17 

X2 2.14 0.84 1.69 1.92 2.16 1.66 

X3 2.20 1.69 0.89 1.99 
    2.23 1.74 

X4 2.42 1.92 1.99 1.10 2.44 1.89 

X5 2.66 2.16 2.23 2.44 1.36 2.21 

X6 2.17 1.66 1.75 1.89 2.20 0.87 

I X1 X2 X3 X4 X5 X6 

X1 1.33 0.03 0.02 0.02 0.03 0.04 

X2 0.03 0.83 0.03 0.01 0.03 0.05 

X3 0.02 0.03 0.89 0.01 0.02 0.02 

X4 0.02 0.01 0.01 1.10 0.02 0.09 

X5 0.03 0.03 0.02 0.02 1.36 0.03 

X6 0.04 0.05 0.02 0.08 0.03 0.87 

3 

1 

5 2 6 

4 

I(X1,X2)>  threshold 
Gives graph 

Information-theoretic 
Chow-Liu algorithm 



Rare and Common Style Inferences
 from PGMs 

Doc: 199a 
Score  : -12 

Doc: 409c 
Score : -12 Doc: 124c 

Score : -11 
Doc: 1434b 
Score : -11 

Doc: 40b 
Score : -4 

Doc: 130b 
Score : -4 

Doc: 1007c 
Score : -4 

Doc: 685a 
Score : -4 

Rare Styles : Looped or tented ‘t’, loop of ‘h’ with both sides curved 

Common Styles: Single stroke ‘t’, retraced ‘h’, pointed arch of ‘h’, 
baseline of ‘h’ slanting down, ‘t’ taller, cross of ‘t’ below 

All scores in log-likelihood 



Summary and Conclusion 
•  Machine Learning 

– Several generations, with beginnings in DAR field 
– Necessary for changing high volume data 

•  To classify, regress, infer, collectively label 

•  PGMs able to handle complexity 
– BN and MN are expressive  
– Allow incorporating domain knowledge 
– Provide relationships between models 

•  Computational Forensics Application 
– Handwriting rarity is inferred from PGMs 
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