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Plan of Discussion

* Machine Learning (ML)
— History and Problem types solved

* Probabillistic Graphical Models (PGMs)

— Tutorial
» Specialized models

« Computational Forensics Application
— Handwriting



What is Machine Learning?

* Automatic construction of programs from
examples of input-output behavior

* Marriage of Computer Science and Probability
[Statistics

1. Computer Science:

« Atrtificial Intelligence
—  Tasks performed by humans not well described algorithmically

« Data Explosion
— User and thing generated

2. Statistics:
 Methods that learn from data (MLE or Bayesian)



When is Machine Learning Needed

* Problems involving uncertainty
— Perceptual data (images, text, speech, video)

 Information overload
— Large Volumes
— Limitations of time, cognitive ability

« Constantly Changing Data Streams
— Search engine adaptation

* Principled design
— High performance systems



Problem Types and Methods
1. Classification
— OCR, Spam Filter (Logistic Regression)
— Text Categorization (SVM)
2. Regression:
— LeToR (GP)
3. Collective Classification
— Speech, Handwriting (HMM)
— PoS, NE (MEMM, CRF)
4. Inferring a Probability Distribution
— Computational Forensics (BN, Sampling)

5. Clustering Data Mining (EM, BIC)



History of ML

» First Generation (1960-1980) 0320 501 Agmotne e
— Perceptrons, Nearest-neighbor, Naive Bayes 3
— Special Hardware, Limited performance |
 Second Generation (1980-2000)
— ANNs, Kalman, HMMs, SVMs Auherst

USPS-RCR

 HW addresses, speech reco, postal words

— Difficult to include domain knowledge
 Black box models fitted to large data sets

* Third Generation (2000-Present)

— PGMs, Fully Bayesian (including GP)
« Image segmentation, Text analytics (NE Tagging)

— Expert prior knowledge with statistical models

USPS-MLOCR



Classification: OCR

Input x={x,...x,,}: Image Features
Output (y): Class Labels {y?, 3,3}

O/ |2I™ Y |
S| |o|| 72| roren

Values: Proportion of black pixels in
each of 12 cells x; i=1,..,12

Handwritten
Digits

Wide variability of same numeral

« Handcrafted rules will x2=0-10% )
result in large no of x!1=10-20% [Val(x,)|=10
rules and exceptions

« Better to have a No of parameters=10!2- ]

machine that learns Or 1 trillion

f | traini £ 1,000 chars/ Per class
fom alarge training se 1:00(,:0?;8229’ No of samples needed="7?



Regression: Learning To Rank

Input (x;):
(d Features of Query-URL pair)

Goog le
Great Wall of China - Wikipeass, e fee encyclogeaia — Log frequency of query in

The Great Wall of China is a series of stone and earthen fortifications in northern China, built

[ J originally to protect the northem borders of the Chinese Empire ... a n Ch O r text

Google Search ) ( I'm Feeling Lucky History - Notable areas - Characteristics - Condition

reat wall of china - Report mages — Query word in color on page
(d >200) . — # of images on page

v 2 — # of (out) links on page

Images for

ray=t
Bai =5 Great Wall of China, History, Gallery of Pictures, Travel Guide, News ... _ Pa e Ran k Of age
www.greatwall-of-china.com/ - Cached g p g
shjE P 0500 4058 MP3 B E Great Wall of China center on Great Wall history, discovery & research, news, travel guide,

13 ”
~

YaHoO!

Web | Images | Video | Local | Shopping | more +

=T % articles, and gallery of pictures. f— URL Iength
K \ The S:e:t Wa;l of C/hin:-3ﬁo-geg_re3.\¢|;rtuhaldTour, Simatai - Page Iength
Theéreat\INaIglof(ihlna?«/ast;uilto;er;norelhantwolhousandyears. Conslrucuw Traditional IR USGS TF/IDF
46 query-document features Output (y)
\_ Maximum of 124 URLs/query /
Relevance Value
- Point-wise (0,1,2,3)
- Regression returns continuous value

Great Wall of China,Beijing Great Wall Tours,Great Wall Facts i
— URL contains
and first-hand reviews from travelers who have been there.
first section began between the 7th and 6th century BC, and the last ...
In LETOR 4.0 dataset
Target Variable
Yahoo! data set has d=700 -Allows fine-grained ranking of URLs




Role of PGMs in ML

* Dozens of ML models, Large Data sets

— PGMs Provide understanding of:

« model relationships (theory)
 problem structure (practice)

— Allow including human knowledge

 Nature of PGMs

1.Represent joint distributions

1.Many variables without full independence
2.Expressive
3.Declarati

2.Inference: Separate model/algorithm errors
3.Learning



Representation
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Probabilistic Graphical Models

Directed

1. Bayesian Network (BN) acyic

Graph

Nodes: variables Edges: direct causality

(correlation irrespective of others)

1

/" CPDs Palp ¥ ¥ =
Pw) ¥y 0 0

g » » » v ) !

2 3 4 5 6 7 8 9
Xi X X; X X; X; X X; \

02 03 02 01 01 O 0

12 CPDs
N N RN N No of parameters=100 x 12=1,200
(instead of 1 trillion)
K Vi /
2. Markov Network (or MRF)
Undirected
— Edge: influence (non-directional)
Ffactors o (x ,,y)%%
mRF: MN for conditional P(y|x) \ (potential)
y target x: observed x? ) 100
15()’|X)=ﬁ¢,-(x,-,y) P(y1x) Is unnormalized o |
1 ~ 9 9
P(y'X)=%P(y|X) Z(x) Partition function of x (1 Y 100 /

\Z(x) =Y P(ylx)

m=no of factors

/

Joint distribution: product of CPDs

P(x.y)= Py ] P 1)

/ » NaTve\
Markov

Joint distribution: product of factors

1 12
P(x,y)= EHQWJ)

Zis normalizing constant:
Partition function

Z= 2H¢i(xi’y)

x i=1

where

)




Discriminative vs Generative Training

Independent variables x ={x,,..x,,} and binary target y

1. Generative: estimate CPD parameters

/Na'l've
Bayes

-

ﬁ:’otential Functions (10g—lin®

dx;,y)=expiwx, [{y=1}},
do()=expiw, {y=1}}

I has value /

Markov when y=1, else 0

(7 R

P(y,x)= p(y)ﬁ P(x,1y) | Low-dimensional estimation
=l independently estimate 12x 10 parameters

~

From joint But pixel independence is false
get ;‘?tqu"eid For sparse data generative is better
k conditiona / k /
2. Discriminative: estimate CRF parameters w.
4 ] . ] )
Unnormalized P(y=1Ix)= eXp{Wo + zwixl} P(y=01x)=exp{0}=1
Normalized P(y=1Ix)= sigmoid{w0 + 122:Wixl} where sigmoid(z) = 1 :
Logistic Regression l
k g g /| j
Jointly optimize 12 parameters multlcla§XS(a)
High dimensional estimation P, |¢)=yi(¢)=ﬁ
but correlations accounted for SRR,

Can use much richer features:
Edges, image patches sharing same pixels

—w T
where a,=w;'¢



Collective Labeling: Three Models

Sequence of observations X={X,,.. X}}

Need a joint label Y={Y,,..Y}}

Both CRF and MEMM are Discriminative Models
Directly obtain P(Y|X)

HMM is generative
Needs P(X)Y)

Model Trade-offs in expressive power and learnability

1.MEMM and HMM are more easily learned
* Directed models: ML parameter estimates have closed-form
* CRF requires expensive iterative gradient-based approach

2.Ability to use rich feature sets
«  HMM needs explicit modeling over features
« CRF and MEMM are discriminative models and avoid this

3.Independence Assumptions made
+  MEMM assumes Y, independent of X, not given ¥,
. Later observation has no effect on current state
In activity recognition in video sequence,
Frames labelled as running/walking.
Earlier frames may be blurry but later ones clearer
Model incapable of going back

f 900 ®® )
R o-0-0-0-6

PY1X)= mp(y .X)

P(Y,X)= H¢>(Y Y, 1>H¢<Y X))

\_ /
>

®®®®®
MEMM
OaOROOR0

PY 1X)= ﬁP(K | X)P(Y 1Y)

XXryr
-G

Joint ——s Px.v)=[]PX, /Y)P¥,1Y_)

Z(X)= ZP(Y X)

/
HMM

P(Y/X)=

distribution XY
N /

P(X)




Dynamic BN: Training Data for LeToR

* Dynamic BN can model Time Trajectory

* LeToR relevance values are assigned by human editors
* Expensive
« Can change over time

* Click Logs:

* provide implicit feedback
. cheap proxy for editorial labels C:: Click on it URL in retrieved list

Hidden Variables:

FE;: did the user examine the url?
A;: was the user attracted by the url?

Si: was the user satisfied by the landing page?

Inference: posterior probabilities of £,4; and S,

r=P@S.=1|E =1

=PS,=1LE=1)/PE =1
=PS,=1LE=1C=0/PE=1) + PS,=1E=1C,=1)/PE =1

=0+ P, =1,C=1|E=1) [satisfaction only upon click]

=P@S,=1|C,=1)P(C,=1|E.=1)



Unusualness of Handwriting
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Probabilistic Model for Handwriting Style
Al Al

S e 2
o M e el T

o 4

t L

4

<

R = Height Rela- | L = Shape of Loop | A = Shape of | C = Height of | B = Baseline of h# | S = Shape of
tionship of 7 to & of h Archof h Cross on ¢ staff
r'=t shorterthan b | I = retraced a’ = rounded | ¢’ = upper half of | 8" = slanting up- | s” = tented
Q D E arch staff ward
r' =tevenwith h | I" = curved right side | a* = pointed ¢ =lower halfof [ b© = slanting | s° = single stroke
Featu res and straight left side staff downward
r* =ttallerthan h | I° = curved left side | a®° =no set pat- | ¢° = above staff b® = baseline even | s = looped
P( RLACB, T) and straight right side | tern
r® =nosetpattern | I° = both sides ¢® = no fixed pat- | b° = no set pattern | s° = closed
curved tern
I* = no fixed pattern s = mixture of
shapes

Val(X)|=4x X 3 x4 x4 X5 =4,800

No of parameters = 4,799




BN for “th”
.
/ Joint Probability

—_— Shape of loop of h (x2)

S
~ No of parameters=
Shape of arch of h (x3) 4|+t2—|a5?+4+ 19+63 — 151
o nstead of 4,800
kBaselineofh(xS) - - - L
x& a b ¢ d
Ficight ofcross on tstaf 0 0.80 0.08 0.04 0.08
0.47 0.37 0.01 0.15
P(CIT)

Mmoo, 6

Shape oft (:6) 0.59 0.29 0.06 0.06
0.76 0.12 0.03 0.09
. 0.45 0.18 0.02 036
X5 a b c d
w=axi=a 0097 0091 059  0.22
P(L,A,T,B,C,R)=P(L)P(A)P(T) weaxs=b 011 013 047 0.9
X2=a,xX3=C 0.09 0.16 0.31 0.43
P(BIA,L)P(CIT)P(RI|B,C) x=bxy=a 022 011 044 022
w=bx=b 029 016 033 0.2l
x;=bxi=c 0.14 0.14 0.43 0.29
weexi=a 033 017 017 033
PB|L, A)xcx=b 025 025 025 025
w=cxs=c 020 020 040  0.20
w=dx;=a 0.2 012 041 035
G w=dx=b 018 015 051  0.15
vw=dxs=c 017 017 033  0.33
w=ex;=a 004 011 061 025

x;=ex;=b 0.24 0.12 0.24 0.39
X=e,x3=C 0.09 0.03 0.42 0.45




gl op A

BN for “and”

Number of
strokes of

6

Formation
of ‘a

s

AN = | AS =| NN =|NS = | NA =| DN =]|DS =|DI=Ini- | U =
No. of | Forma- No. of | Forma- Shape of | No. of | Forma- tial Stroke | Unusual
strokes tion of | strokes tion of | Archofn | strokes tion of | ofd forma-
for  for- | Staff ofa for  for- | staffofn for  for- | staffofd tions/use
mation of mation of mation of of symbol
a n
an”= one | as” = [ nn" =one | ns" = | na” = [ dn" =one | ds” =[di" =top | u° = for-
continuous | tented continuous | tented pointed continuous | tented of staff mation
an' =two | as' =re- [ nn' = [ ns' = - | na' = [ dn"=two | ds' =re- | di' =bulb | u' =sym-
strokes traced two traced rounded strokes traced bol
strokes
an’ = [ as? = | nn? = | ns? = [ naZ =no | dn? = [ ds? = | di? = [ »Z =none
three looped three looped fixed pat- | three looped undeter-
strokes strokes fern strokes mined
an® —up- | as° = N0 | nn° =up- | ns° = no dn® =up- | ds° =sin- | di° = no
per case staff percase staff per case gle down fixed pat-
tern

an® =no | as? = [ nn* =no | ns? = no dn® = no | ds¥ =sin-
fixed pat- | single line | fixed pat- | fixed pat- fixed pat- | gleup
tem down tern tern tern

as® = no ds® = no

fixed pat- fixed pat-

tern tem

Nine variables
No of parameters needed= 809,999

Number of
strokes of

Number of
strokes of

e

n

ormation Formation
of ‘n’ of ‘d’

Unusual use
of symbol

Initial
stroke of *d’

Shape of

arch of ‘n’

No of parameters needed= 688
(Less than 1%)

18



Inference
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Inference and Queries with PGMs

 Inference: Probabilistic Models used to
answer queries

* Query Types
1.Probability Queries

* Query has two parts
— Evidence: a subset E of variables and their instantiation e
— Query Variables: a subset Y of random variables in network

2. MAP Queries

* Maximum a posteriori probability
 Also called MPE (Most Probable Explanation)

20



Inferring the Probability of Evidence

Probability Distribution of Evidence
P(LC)= Y P(LAT.B.C.R) Sum Rule of Probability

AT.BR

= Y. P(L)P(A)P(T)P(B| A,L)P(CIT)P(RIB,C)  From the Graphical Model

AT.B.R

Probability of Evidence
P(L=1"C=c")= Y,P(L=1")P(A)P(T)P(BIA,L)P(C=c'IT)P(RIB,C =c")

AT.B.R

More Generally
P(E=e)= ZHP(XZ' | pa(X;)l;_,

X\E i=1

An intractable problem
« #P complete

P: solution in polynomial time
NP: verified in polynomial time
#P complete: how many solutions

Tractable when tree-width is less than 25

Approximations are usually sufficient (hence sampling)
 When P(Y=y|E=e)=0.29292, approximation yields 0.3

21



Inference: Rarity

4 I
/ PRC \ nPRC / Conditional nPRC
/\”.
X; n
n
RN
(z
pP= P(ZO) =ZZP(ZO|X1=X2)P(X1)P(X2> ol =1—(1 _p)n n2—1)< p(Z _ 1|Xs) _ ZP(Z _ 1|XS,X)p(X)
Lif d(X1,Xs) < € X
wole,Xz) = {0’ Oth(er;isé)j L ) \ For identical match 1 - (1 — P(X}))" /

/ Rare Common \
0N 120 AN TR S

nPRC=1.17 x10~ nPRC=0.156

ARV FAD 0D ot pl o

22
\ nPRC=2.14 x 108 nPRC=0.166 /




Learning
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Learning Problems with PGMs

« Parameter Learning (given structure)

Bayesian Networks Markov Networks

Global normalization

Local normalization within constant (the partition

EEI GHD function)
Global parameter coupling
Estimate local groups of across the network
parameters separately (even MLE has no closed

form)

Data Collection

» Structure Learning |
— Search through network space W

» Partial Data
— EM




Parameter Learning For BN

Max Likelihood Est P(x;|x,x,)

X,=0,X%,=0 0.50 0 0 0.50
X,=0,X,=1 0 1.00 0 0

X,=0,X,=2 0.18 036 027 0.18
X,=0,X,=3 0.27 0.40 0.30 0.03

X =0,X,=4 0.22 0.45 0.28 0.05
X,=1,%=0 0.43 0 0.28 0.29
X =1,%=1 NaN NaN NaN NaN
Xy=1,%,=2 0.39 0.06 033 0.22
Xy=1,%=3 033 0.17 033 0.17
X,=1,X=4 0.42 0.11 0.29 0.18

@ ° Bayesian Estimate

X,=0,%,=0 0.29 0.14 0.29 0.29
X,=0,%,=1 0.25 0.25 0.25 0.25
X,=0,X,=2 0.25 0.38 0.25 0.12
X,=0,X,=3 0.22 0.41 0.31 0.06
X,=0,X, =4 0.16 0.52 0.25 0.07
X,=1,%=0 0.29 0.14 0.29 0.29
X,=1,%=1 0.25 0.25 0.25 0.25
BayeSIan Estlmatlon Xi=1,%=2 037 0.05 0.47 0.11
X,=1,X,=3 0.33 0.22 0.33 0.11
. . . L X2l X,=4 0.38 0.13 0.29 0.20
Prior 0 ~ Dirichlet(a1,....a) a1 = ... =g =1 > —  — —
Likelihood O ={o1....,0r} ~ Multinomial(61, .., )
. o ! 7
Posterior €|O ~ Dirichlet(ay, ..., a})
25

/ .
o, = o; +o;.fori=1,... k



Parameter Learning for MN

Joint distribution for pairwise MN

p(X)——¢1(X1»X) ¢, (X, X5) 6:(X,, X)

ﬁg-linear model

P(x,...x, :0)=

e.g.,

eXp{ZG f(D )}

Z20) U5
n: # variables, k: # cliques 0,; parameters

Log-likelihood of M i.i.d. samples
€(9)=il@i(;f,-(é[m]))—Mlng,em(i,@iﬁ(é)j

Gradient of log-likelihood

——f(e) 2, fiElm Zgﬁ(‘f)exl’(z;%(é))
200, M M dexp(z;eifi(é))

Concave, BUT no analytical maximu
=> Use iterative gradient ascent

'¢4(X23X5)'¢5(X2:X6) ¢6(X29X3) ¢7(X4’X6)

'(Pl(X)'(Pz(X )'(p3(X3)'(04(X4)'§05(X5)'§06(X6)
No of Parameters 6.:
O+16+20+20+25+15+20+4+5+3+4+4+5=161

0,, =log¢ (X, =0,X,=0)
0,, =log¢ (X, =0,X,=1)

0, =log¢ (X, =3,X,=3)

Estimated edge potential for
\ Edge
Poten X;=0 X;=1 X;=2 X;=3

tial
X,=0 335 2610 599 1.42
X, =1 154 2.14 1.76 0.94
X, =2 2001 69.75 3349 14.90
X, =3 299 9.12 4.71 2.25

prob for every setting of X => expensive
» Approximate inference

« Approximate objective
- Not as much inference
- Pseudo-likelihood, maxent

Initialize 6;

Inference step for Z: Computes unnormalized

- particle-based methods (MCMC sampling)
- global algorithm (belief prop, mean-field)

no

]

Inference
(compute 7)

!

Compute
gradient of 4(0)

!

Update 6,

!

Optimum
reached
?

‘Lyes

Log-likelihood
8208488

Iteration number




Structure Learning of BNs

* Problem: Many perfect maps for distribution P*
« Goal: Asymptotically recover G*'s equivalence class

« Search through space of BNs
— Score function for each BN
— Score (G : D) = log-likelihood (B4 : D)
* Bgare parameters of G

X, X, X, X, X Xq
Height Shape of Shape of Height of Baseline Shape of
Relation loop of ‘h’ arch of ‘h’ ‘t’ cross of ‘h’ ‘v

G,=Based on
Chi-sq tests e

Dependency
12 (X, Xg) = 224 9
12 (Xe X,) =167 g
Conditional independence g “ 3-fold
Cross
Validation
G,

G,=Human

12 (Hy: XL X, | Xo) =42

¥2 (Hy: X, L X, | X,) =43 Q G,

(Observed count of [z;,y;] — Expected count of [aci,yj])2
Expected count of [z;,y;]

XQ(D) = Zi.j

Compute y? statistics for all
pairwise variables & construct E

Structure from

2 Chi-squared
LetG={VE}, E={}, k=1 Ind d
Compute S, naepenaence
v Tests
E; = E;=E; Pick a pair of edges {(i,j),
> (i)} from E, with largest y* statistics,
add each to E;j, Ej, estimate 6, 6;; ,
compute score S;, S;
No No
Yes Yes
E =E; E=E
k=k+1;§=§; k=k+1;§,=S;
I v
Delete {(i,j),(j,i)}
from E, <
No
Average @

Score Yes

-2598 Stop

-2591

27



Algorithm for structure learning: z ZZ
1. Estimate empirical probability: 4
2p 1[X; = N]
P(X;=N) =

2. Calculate all marginal entropies:
HOG) == ) POO)Iog(P(,)
Xl X,
and all pair-joint entropies: %
HOX0X) == ) POy, Xp)log(P(Xy, X,)) -

Structure Learning of MNs

Information-theoretic
Chow-Liu algorithm

X1,X2
3. Calculate mutual information:
I(Xy,X;) = H(X;) + H(X3) — H(X1,X3)
4.  Include edges (X;, X;) in to the structure

if 1(X1,X,) = threshold

1.34

2.14

2.20

242

2.66

217

x x x x x x
& & £ & N 2

2.14

0.84

1.69

1.92

2.16

1.66

1.33

0.03

0.02

0.02

0.03

0.04

1.69

0.89

1.99

223

1.75

0.03

0.83

0.03

0.01

0.03

0.05

1.92

1.99

1.10

2.44

1.89

0.02

0.03

0.89

0.01

0.02

0.02

2.16

223

2.44

1.36

2.20

0.02

0.01

0.01

1.10

0.02

0.08

[(X1,X2)> threshold

1.66

1.74

1.89

221

0.87

0.03

0.03

0.02

0.02

1.36

0.03

0.04

0.05
0.02

0.09

0.03 28

0.87



Rare and Common Style Inferences
from PGMs

Rare Styles : Looped or tented ‘t’, loop of ‘h’ with both sides curved

G+l W 242 1o

Doc: 199a 18)55564_0_9102 Doc: 124c¢ Doc: 1434b
Score :-12 ' Score : -11 Score : -11

Common Styles: Single stroke ‘t', retraced ‘n’, pointed arch of ‘h’,
baseline of ‘h’ slanting down, ‘t’ taller, cross of 't below

I I A

Doc: 40b Doc: 130b Doc: 1007¢ Doc: 685a
Score : -4 Score : -4 Score : -4 Score : -4

All scores in log-likelihood




Summary and Conclusion

* Machine Learning
— Several generations, with beginnings in DAR field
— Necessary for changing high volume data
 To classify, regress, infer, collectively label
 PGMs able to handle complexity
— BN and MN are expressive
— Allow incorporating domain knowledge
— Provide relationships between models

« Computational Forensics Application
— Handwriting rarity is inferred from PGMs

30



