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Abstract
Graphics detection and recognition are fundamental re-

search problems in document image analysis and retrieval.
As one of the most pervasive graphical elements in busi-
ness and government documents, logos may enable imme-
diate identification of organizational entities and serve ex-
tensively as a declaration of a document’s source and own-
ership. In this work, we developed an automatic logo-based
document image retrieval system that handles: 1) Logo de-
tection and segmentation by boosting a cascade of classi-
fiers across multiple image scales; and 2) Logo matching
using translation, scale, and rotation invariant shape de-
scriptors and matching algorithms. Our approach is seg-
mentation free and layout independent and we address logo
retrieval in an unconstrained setting of 2-D feature point
matching. Finally, we quantitatively evaluate the effective-
ness of our approach using large collections of real-world
complex document images.

1. Introduction

Logos are often used pervasively as declaration of doc-
ument source and ownership in business and government
documents. The problem of logo detection and recognition
is of great interest to the document image analysis and re-
trieval communities because it enables immediate identifi-
cation of the source of documents based on the originat-
ing organization. Facing continually increasing volumes of
documents, detecting and recognizing unique, evidentiary
graphical symbols, such as logos [15] and signatures [18],
is a practical and reliable supplement to the recognition of
printed text using OCR and analysis of text by natural lan-
guage processing. In the context of document image re-
trieval, logos provide an important form of indexing that
enables effective exploration of data.

In the following sections, we first motivate the prob-
lems of logo detection, segmentation, and matching for
document image retrieval. We then present our approach
to graphics recognition based on translation, scale, and
rotation-invariant shape descriptors and matching algo-
rithms for generic 2-D feature points, with a focus on the
logo matching problem.

Figure 1: Examples of detected and segmented logos from the
Tobacco-800 document image database [1, 16].

2. Related Work

Prior literature has focused almost exclusively on logo
recognition [5, 8, 9, 12, 13]. These studies assume that
an effective logo detection and segmentation approach is
available. Recognition results are largely reported on the
University of Maryland (UMD) Logo Database [7], which
contains 105 distinct grayscale logo images. The UMD
logo database, however, is far from a perfect recognition
benchmark, because it contains only one logo instance per
class. Some approaches were evaluated based on the task
of group membership recognition (e.g. 6 classes in [13]) or
subsets of the database (e.g. 20 logo classes in [5]), while
others included their own logo collections [9, 12]. Fur-
thermore, these approaches generated rotated, noise cor-
rupted, or manually edited logos as test sets using different
schemes, making direct comparison difficult.

A fundamental problem in the recognition of graphi-
cal symbols is the lack of a general representation based
on generic, geometrically invariant features. Doermann
et al. [8] extracts text and primitive shapes (lines, circles,
and rectangles) from logos using many specific feature de-
tectors, and use global and local geometric invariants for
matching. Neumann et al. [12] uses projection profiles, nor-
malized centroid distance, eccentricity, and various density
features for logo recognition. These approaches have lim-
itations. First, it is difficult to robustly extract high-level
features (e.g. graphical, inverse, or circular text) in a geo-
metrically invariant manner under diverse image qualities
and degradations. Second, these methods are hard to extend
because they are based on a collection of handpicked and
trainable features and a variety of decision rules.
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Figure 2: Shape contexts [2] and neighborhood graphs [14] constructed from corner feature points. First column: Examples of logos.
Second column: detected corners marked on edge images. Third column: Shape contexts descriptors constructed at a point, which provides
a large-scale shape description. Fourth column: Neighborhood graphs capture local structures for non-rigid shape matching.

3. Logo Detection and Segmentation

Detecting and segmenting free-form graphical patterns
such as logos is challenging. Large variations in logo style
(see Fig. 1) and low quality images can make detection
difficult. Complicating matters, the foreground content of
documents generally includes a mixture of machine printed
text, diagrams, tables and other elements. From the appli-
cation perspective, accurate localization is needed for logo
recognition. Logo detector must consistently detect and ex-
tract complete logos while attempting to minimize the false
alarm rate.

We extend our previous logo detection and segmentation
approach [15], by incorporating a two-step, partially super-
vised learning framework that effectively deals with large
variations. We learn the base detector—a Fisher classifier
at a coarse image scale, from a small set of segmented im-
ages and test on a larger pool of unlabeled training images.
We then bootstrap these detections to boost a cascade of
classifiers at finer image scales, which allows false alarms
to be quickly rejected and the detected logo to be more pre-
cisely localized. Our logo detection approach is segmenta-
tion free and layout independent. Interested readers can re-
fer to [15] for details. Fig. 1 shows detected and segmented
logos by our approach from the Tobacco-800 document im-
age database [1, 16].

4. Matching and Retrieval

4.1 Overview

Given a query logo instance and a database of detected
logos, our goal of logo matching is to compute an effective
ranked list for logos in the database. By constructing the
list of best matching logos, we effectively retrieve the set of
documents from the same organizational entities.

We treat a logo as a non-rigid shape, and represent it
by a discrete set of 2-D feature points extracted from the
object. 2-D point features offer several advantages com-
pared to other compact geometrical entities used in shape
representation, because it relaxes the strong assumption that
the topology and the temporal order of features are well
preserved under image transformations and degradations.
For instance, the same portion of contours in one logo
sample may overlap, while appearing separated in other
cases. Represented by a 2-D point distribution, a shape
is more robust under image degradations and noise, while
carrying discriminative shape information. As shown in
Fig. 2, the shape of a logo is well captured by a finite
set P = {P1, . . . , Pn}, Pi ∈ R2, of n corner feature points
computed from the edge image.

We use two state-of-the-art shape matching algorithms
for logo matching. The first method is based on the rep-
resentation of shape contexts, introduced by Belongie et
al. [2]. In this approach, a spatial histogram defined as
shape context is computed for each point, which describes
the distribution of the relative positions of all remaining
points (see column 3 in Fig. 2). Prior to matching, the
correspondences between points are solved first through
weighted bipartite graph matching. Our second method
uses the neighborhood graph matching algorithm by Zheng
and Doermann [14], which formulates shape matching as
an optimization problem that preserves local structures (see
column 4 in Fig. 2). This approach has an intuitive graph
matching interpretation, where each point represents a ver-
tex and two vertices are considered connected in the graph
if they are neighbors. The problem of finding the opti-
mal match between shapes is thus equivalent to maximizing
the number of matched edges between their corresponding
graphs under a one-to-one matching constraint. Computa-
tionally, neighborhood graphs employ an iterative frame-
work for estimating the correspondences and the transfor-
mation. In each iteration, graph matching is initialized us-
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Figure 3: Anisotropic scaling and registration quality effectively
capture shape differences. (a) Detected logos. (b) Extracted cor-
ners. (c) Matching results of first two logos using shape contexts.
(d) Matching results of first and third logos using shape contexts.
Corresponding points identified by shape matching are linked and
unmatched points are shown in green. The computed affine maps
are shown in figure legends.

ing the shape context distance [2], and subsequently up-
dated through relaxation labeling for more globally consis-
tent results.

Treating graphics and symbols as 2-D point distributions
broadens the space of dissimilarity metrics and enables ef-
fective shape matching based on the correspondences and
the underlying transformations [19]. We introduce shape
dissimilarity metrics that quantitatively measure anisotropic
scaling and registration residual error, and present a super-
vised training framework for effectively combining com-
plementary shape information from different dissimilarity
measures by linear discriminant analysis (LDA).

4.2 Feature Selection and Extraction

Extracting robust and generic features that can be de-
tected reliably is essential for matching as logos often ap-
pear as complex mixtures of graphics and formatted text.
We extract corner features from detected logos as follows.
We first extract the object contours from the edge image
computed by the Canny edge detector [4] and fill in the
gaps along the contours. We then use the corner detector
of He and Yung [10]. It has shown excellent performance in
applications involving real-world scenes compared to other
popular feature detectors. It identifies an initial set of corner
candidates from local curvature maxima and uses adaptive
local thresholds and dynamic support regions to eliminate
false corners. Fig. 3(b) shows extracted corners from de-
tected and segmented logos in real document images.

4.3 Measures of Shape Dissimilarity

Several measures of shape dissimilarity have demon-
strated success in object recognition and retrieval. One is
the thin-plate spline bending energy Dbe, and another is the
shape context distance Dsc.

As a conventional tool for interpolating coordinate map-
pings from R2 to R2 based on point constraints, the thin-
plate spline (TPS) is commonly used as a generic represen-
tation of non-rigid transformation [3]. The TPS bending
energy Dbe [6] measures the amount of non-linear defor-
mation to best warp the shapes into alignment. However,
Dbe only measures the deformation beyond an affine trans-
formation, and its functional is zero if the undergoing trans-
formation is purely affine.

The shape context distance Dsc between a template
shape T composed of m points and a deformed shape D
of n points is defined in [2] as

Dsc(T ,D) =
1
m

∑
t∈T

arg min
d∈D

C(T (t), d)+
1
n

∑
d∈D

arg min
t∈T

C(T (t), d),

(1)
where T (.) denotes the estimated TPS transformation and
C(., .) is the cost function for assigning correspondence be-
tween any two points. Given two points, t in shape T and d
in shapeD, with associated shape contexts ht(k) and hd(k),
for k = 1, 2, . . . ,K, respectively, C(t, d) is defined using
the χ2 statistic as

C(t, d) ≡ 1
2

K∑
k=1

[ht(k)− hd(k)]2

ht(k)− hd(k)
. (2)

We introduce two new measures of shape dissimilarity
and use them as signals for computing ranked list in re-
trieval. Each dissimilarity measure captures certain shape
information from estimated correspondences and transfor-
mation. We describe how to effectively combine these
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measures with limited supervised training in the next sub-
section.

Our first new measure of dissimilarity Das character-
izes the amount of anisotropic scaling between two shapes.
Anisotropic scaling is a form of affine transformation that
involves change to the relative directional scaling [19]. As
illustrated in Fig. 3, the stretching or squeezing of the scale
in the computed affine map captures global mismatch in
shape dimensions among all registered points, even in the
presence of large intra-class variation.

We compute the amount of anisotropic scaling between
two shapes by estimating the ratio of the two scaling fac-
tors Sx and Sy in the x and y directions, respectively. A
TPS transformation can be decomposed into a linear part
corresponding to a global affine alignment, together with
the superposition of independent, affine-free deformations
(or principal warps) of progressively smaller scales [3]. We
ignore the non-affine terms in the TPS interpolant when es-
timating Sx and Sy . The 2-D affine transformation is repre-
sented as a 2×2 linear transformation matrix A and a 2×1
translation vector T(

u
v

)
= A

(
x
y

)
+ T. (3)

We can compute Sx and Sy by singular value decomposi-
tion on matrix A.

We define Das as

Das = log
max (Sx, Sy)
min (Sx, Sy)

. (4)

Note that we have Das = 0 when only isotropic scaling is
involved (i.e., Sx = Sy).

We propose another distance measure Dre based on
the registration residual errors under the estimated non-
rigid transformation. To minimize the effect of outliers,
we compute the registration residual error from the subset
of points that have been assigned correspondence during
matching, and ignore points matched to the dummy point
nil. Let function M : Z+ → Z+ define the matching be-
tween two point sets of size n representing the template
shape T and the deformed shape D. Suppose ti and dM(i)

for i = 1, 2, . . . , n denote pairs of matched points in shape
T and shape D, respectively. We define Dre as

Dre =

∑
i:M(i) 6=nil ||T (ti)− dM(i)||∑

i:M(i) 6=nil 1
, (5)

where T (.) denotes the estimated TPS transformation and
||.|| is the Euclidean norm.

4.4 Shape Distance

After matching, we compute the overall shape distance
as the weighted sum of individual distances given by all

the measures [17]: shape context distance, TPS bending en-
ergy, anisotropic scaling, registration residual errors, and
the number of unmatched points.

D = wscDsc + wbeDbe + wasDas + wreDre + wumDum.
(6)

The weights in (6) are optimized by linear discriminant
analysis using only a small amount of training data.

5. Experiments

5.1 Baseline Technique

For comparison, we developed a baseline matching ap-
proach by computing normalized 2-D cross-correlation be-
tween two logos after dimension scaling and rotation cor-
rection. The cross-correlation Dcc of a query logo Q with a
search logo P is

Dcc(Q,P) =
1

n− 1

∑
x,y

(qx,y − q̄)(px,y − p̄)
σqσp

, (7)

where n is the number of pixels.

5.2 Evaluation Metrics

We use two most commonly cited measures, average
precision and R-precision, to evaluate the performance of
each ranked retrieval. Average precision (AP) rewards re-
trieval systems that rank relevant documents higher, and
at the same time penalizes those that rank irrelevant ones
higher. R-precision (RP) de-emphasizes the exact ranking
among the retrieved relevant documents and is more useful
when there are a large number of relevant documents. The
overall system performance across all queries are computed
quantitatively in mean average precision (MAP) and mean
R-precision (MRP), respectively.

5.3 Dataset

We demonstrate performance using the 1, 290-image
Tobacco-800 database [1,16]. Tobacco-800 is a public sub-
set of the IIT CDIP Test Collection and has been used in
TREC 2006 and 2007 evaluations [1]. It is a realistic, com-
plex dataset for document analysis and retrieval, because
these documents were collected and scanned using a wide
variety of equipment over time [11]. The image resolu-
tions range from 150 to 300 DPIs and their qualities vary
considerably. The Tobacco-800 collection and its associ-
ated groundtruth is available in XML format at [16]. We
tested our system using a total of 386 logos across 35 classes
detected from the Tobacco-800 dataset, among which the
number of logos per class varies in the range from 3 to 52.
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Table 1: Quantitative comparison of retrieval performances.

Approach (Measure of Dissimilarity) MAP MRP

Correlation with scale and rotation corrections (Dcc) 42.5% 38.2%

Neighborhood graphs (Dsc + Dbe) 63.1% 59.3%

Neighborhood graphs (Dsc + Dbe + Das + Dre + Dum) 75.5% 70.8%

Shape contexts (Dsc + Dbe) 69.7% 65.3%

Shape contexts (Dsc + Dbe + Das + Dre + Dum) 82.6% 78.5%

5.4 Results and Discussion

Table 1 summaries the performances of different match-
ing algorithms in combination with different measures
of shape dissimilarity. Both neighborhood graphs and
shape contexts significantly outperform the correlation
method. This demonstrates the competitive advantages of
approaches based on 2-D feature matching in the recogni-
tion of graphics and symbols. First, their shape descrip-
tors are built from generic 2-D point distribution, which can
be robustly extracted in practice. Second, these approaches
solve the underlying transformations (affine for linear and
TPS for non-linear transformation), which improves shape
matching and discrimination.

Shape contexts method gives the best logo matching per-
formance as shown in Table 1. By incorporating rich global
shape information, shape contexts descriptors are more ro-
bust under significant image degradations than neighbor-
hood graphs, which capture local structures.

Shape dissimilarity measures computed from anisotropic
scaling, registration residual error, and the number of un-
matched points significantly improve the retrieval perfor-
mance, demonstrating that we can improve the retrieval
quality considerably by combining complementary mea-
sures of shape dissimilarity. In addition, this experiment
shows the effectiveness of learning the optimal weight asso-
ciated with different dissimilarity metrics using LDA under
limited supervised training.

6. Conclusion

In this paper, we have presented an approach to automati-
cally detecting, segmenting, and matching logos from docu-
ments with unconstrained layouts and complex background
for document retrieval. To robustly handle variety of image
qualities and degradations, we treated the logo in the uncon-
strained setting of a non-rigid shape and demonstrated doc-
ument image retrieval using state-of-the-art shape represen-
tations, measures of shape dissimilarity, and shape match-
ing algorithms. We quantitatively evaluated the effective-
ness of our approach in challenging retrieval tests using
public, real-world document image collections involving a
large number of classes but relatively small numbers of logo
instances per class.
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